• Title/Summary/Keyword: Mixture ratios

Search Result 663, Processing Time 0.029 seconds

Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design (고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성)

  • Jeong, Yeon-Ung;Oh, Sung-Woo;Cho, Young-Keun;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.585-593
    • /
    • 2021
  • This study investigates the compressive strength of high-strength cement composites with 64 mixture designs and 2 curing conditions. The cement composites were designed with varying water-to-binder ratios, silica fume content to cement, and binder content per unit volume of cement composite to explore compressive strength development depending on its mix design. An increase in the water-to-binder ratio decreased the compressive strength of the composites, having consistency with the trend in normal concrete. The compressive strength increased with ages at an ambient curing temperature, but it was not identified at high-temperature curing. The compressive strength development was negligible in case that silica fume content to OPC is 15%~25%, but a decrease in the con ten t below 15% reduced compressive stren gth. It was more obvious in the specimen of low water-to-binder ratio. The specimen with 840kg/m3 of binder content per unit volume had the highest compressive strength in this study, and the decrease in binder content reduced the compressive strength of high strength cement composites in low silica fume content.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

Strength and Thermal Properties of Concrete for Replacement Fine Aggregate with Biochar (잔골재를 바이오차로 치환한 콘크리트의 강도와 열적 특성)

  • Kyoung-Chul Kim;Kwang-Mo Lim;Min-Su Son;Young-Seok Kim;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.425-432
    • /
    • 2023
  • In this study, we aim to develop a carbon-reducing concrete technology by incorporating biochar. Performance evaluation experiments were conducted on concrete mixtures containing biochar with insulating and carbon-capturing properties, which are essential for key infrastructure sectors such as construction and tunnels. Concrete mixtures were designed with different biochar incorporation rates of 0 %, 5 %, 10 %, 15 %, and 20 %, as w ell as w ater-to-binder ratios of 0.25, 0.30, 0.35, and 0.40. To assess the physical properties of each mixture, unit weight, total porosity, and permeability were measured, while mechanical properties were determined through the measurement of concrete compressive and flexural strengths. Key factors for enhancing the insulating effect of carbon-reducing concrete containing biochar were identified through regression analysis, indicating a close correlation among biochar incorporation rate, unit weight, concrete strength, and thermal conductivity. It is anticipated that it can be utilized as an insulating material to enhance thermal performance in northern regions with severe winter climates.

Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair (폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질)

  • Young-Kug Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.97-104
    • /
    • 2023
  • The aim of this study was to produce polymer cement composites (PCCs) composed of polymer dispersion and cement as crack repair materials for RC structures, and to investigate their fundamental properties. The test mixtures for the study were based on EVA and SAE polymer dispersions, and the water-cement ratio was determined while varying the polymer-cement ratio(P/C) in four different levels (20%, 60%, 80%, and 100%) to achieve the desired viscosity of PCCs considering their fillability as crack repair materials. Additionally, silica fume was incorporated into P/C 80% and 100% specimens to enhance their stiffness. The basic properties of PCCs as crack repair materials, such as viscosity, flowability, fillability, tensile strength, elongation, and modulus of elasticity, were examined. The results showed that P/C depending on the type of polymer significantly affected the viscosity and flowability, and appropriate w/c ratios were needed to achieve the desired viscosity for the mixture design with consideration of fillability as crack repair materials for RC structures. All designed mixtures in this study exhibited excellent fillability. The tensile strength and elongation of PCCs satisfied the KS regulation for cement- polymer modified waterproofing coatings. The incorporation of silica fume improved the tensile strength and modulus of elasticity of PCCs. Depending on the type of polymer, mixtures using SAE showed better fundamental properties as crack repair materials for RC structures compared to those using EVA. In conclusion, SAE-based P/C 80% or 100% with the addition of up to 30% silica fume can be recommended as suitable mixtures for crack repair of RC structures.

Combined Effect of Afidopyropen, Chlorfenapyr and Cyantraniliprole to Insecticide-resistant Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae) (살충제 저항성 목화진딧물에 대한 afidopyropen과 chlorfenapyr, cyantraniliprole의 혼합효과 평가)

  • Dong-Hyun Kang;Yuno Lee;Ha Hyeon Moon;Se Eun Kim;Hyun-Na Koo;Hyun Kyung Kim;Gil-Hah Kim
    • Korean journal of applied entomology
    • /
    • v.63 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • The susceptibility of Aphis gossypii populations collected from three fields (WJ, CC, and GS) was evaluated to three insecticides (afidopyropen, chlorfenapyr and cyantraniliprole) and three binary mixtures. Three field populations showed resistance ratios of over 100 to all insecticides. The Combination Index (CI), %M(synergism), Co-Toxicity Coefficient (CTC), Wadley Ratio (WR), Synergism Ratio (SR) and Abbott Ratio (AR) were used to evaluate combined effect of the insecticides. Afidopyropen + chlorfenapyr (CI ≤ 0.16; %M(synergism) ≥ 94; CTC ≥ 764.5; WR ≥ 6.4; SR ≥ 6.9 and AR ≥ 1.1) showed a synergism in all filed populations. WJ and CC populations showed a synergism in all binary mixtures of insecticides, but GS population showed an antagonism for chlorfenapyr + cyantraniliprole (CI, 1.63; %M(synergism), 30; CTC, 64.0; WR, 0.6 and AR, 0.54) and afidopyropen + cyantraniliprole (CI, 6.7; %M(synergism), 1; CTC, 19.8; WR, 0.2 and AR ≤ 0.55). All mixtures (afidopyropen + chlorfenapyr, chlorfenapyr + cyantraniliprole and afidopyropen + cyantraniliprole) showed a control value of over 99% after 21 days of treatment in the field. This study highlights that binary mixtures of three insecticides serve as an effective control strategy for A. gossypii.

Determination of Solidified Material's Optimum Mixing Ratio for Reservoir Embankment Reinforcement (저수지 제체 보강을 위한 고화재 최적 배합비 결정)

  • Jaegeun Woo;Jungsoon Hwang;Seungwook Kim;Seungcheol Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2024
  • Currently, a grouting method that minimizes damage to the reservoir embankment by injecting solidification agent at low pressure is commonly used to ensure waterproofing and safety of the embankment, but the use of solidification agents can cause issues, such as a decrease in durability and a lack of clear method for determining the mixing ratio. In this study, when the base ground and solidification agent were stirred and mixed at various weight mixing ratios, the permeability coefficient and strength of the mixture were confirmed through laboratory tests, and the optimal mixing ratio was suggested through analysis of the test results. The specimen for the laboratory test was produced considering the mixing ratio of the solidification agent. The specimen for the permeability coefficient test was tested by producing one each of cohesionless and cohesive soil for a mixing amount of 1.5 kN/m3 of solidification agent, and the permeability test results confirmed that the water barrier performance was secured below the permeability coefficient value required by various design criteria. A total of 24 specimens for the strength test were produced, 3 for each of 5 mixing amounts for cohesive soil and 3 mixing amounts for cohesionless soil. The strength test results showed that the uniaxial compressive strength tends to increase linearly with increasing curing time for both cohesionless soil and cohesive soil when the mixing amount is less than 2.0 kN/m3. Therefore, the optimal mixing ratio applied to the site is determined to be mixing amount of 1.5 kN/m3 and 2.0 kN/m3. Finally, numerical analysis reflecting test results was conducted on design case for improvement projects for aging reservoirs embankment to verify the water barrier performance and safety improvement effects.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF

Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • The main objective of this study is to investigate the characteristics of combustion by analyzing fuel gases from a combustion equipment with various combustion conditions for refuse-derived fuels (RDFs). CO gas is a parameter for indicating of incomplete combustion during a combustion process. The lowest CO gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. $CO_2$ gas is a final product after complete combustions. The highest amount of $CO_2$ gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. The highest level of $SO_2$ gas was produced in S.1 sample containing the highest sulfur. The highest level of NOx gas was produced in S.1 sample with the highest nitrogen content and air-fuel condition of m=2 under temperature of $800^{\circ}C$. HCl gas that is generated by reacting with metals catalyst through oxygen catalyst reaction during combustion process is a precursor of dioxin formation. The higher level of HCl gas was produced in the sample with higher chlorine content. The lowest level of HCl gas was produced when the experiment conditions were air-fuel condition of m=2 and $800^{\circ}C$. The lowest level of $NH_3$ gas was generated when the experiment condition was m=2 under air-fuel condition and after 3 minutes. Air-fuel condition is more important to create $NH_3$ gas than operating temperatures. Higher level of $H_2S$ gas was generated in S.1 sample with the higher sulfur content and was created in RDFs that contain higher mixture ratios of sewage sludge and food wastes. A result of combustion, gases and gases levels from the combustion of S.1 and S.2 were very similar to the combustion of a stone coal. As results of this research, when evaluating the feasibility of the RDFs, the RDFs could be used as auxiliary and main fuels.

  • PDF

Effects of Concentrated Pig Slurry Using Membrane Filter on the Growth and Yield of Tomato in Nutriculture (막분리 돈분뇨 농축액비를 이용한 양액재배가 토마토의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • This experiment was conducted to investigate the effects of concentrated pig slurry using membrane filter on growth of tomato in nutriculture. Pig slurry was filtered by ultra filtration and concentrated by reverse osmosis process. Filtration of pig slurry was necessary to prevent the hose clogging in nutriculture. The concentrated pig slurry (CS) and nutrient solution (NS) were mixed by six different mixing ratios of 0:100, 20:80, 40:60, 60:40%, 80: 20 and 100%:0% based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0mS/cm$ in EC. The plant height of tomato treated with CS 20+NS 80% was similar with NS 100% control plot. Plant height was highest in the plot of CS 20+NS 80%. The treatment of 100% concentrated pig slurry was lowest in the gowth characteristics of tomato. Number of cluster was very lower in 100% concentrated pig slurry compared with plot of chemical nutrient solution. In the beginning of growth stage, SPAD reading value was reduced in plot treated with CS 100%, but CS 20+NS 80% plot was higher compared to 100% concentrated pig slurry. SPAD value of tomato leaves was decreased as the amount of CS was increased. The SPAD value also in treatment of concentrated pig slurry was lower in the middle growth stage compared to control plot. The dry weight of stem and leaf were 107.4, 104.2g in plot of NS 100% and CS 20%+NS 80%, respectively. The fruit number and weight were decreased at high application plots of concentrated pig slurry, The fruit setting of tomato showed lowest in the plot treated with 100% concentrated pig slurry, and the growth of tomato severely decreased after application of 100% CS treatment. In conclusion, the growth characteristics such as plant height and fruit weight of tomato were not significantly different between the plots treated with mixture of 20% CS +80%NS and 100% nutrient solution treatment. In conclusion, the mixture solution of 20% of concentrated pig slurry and 80% of nutrient solution could be used as a nutrition solution of tomato nuticulture.

  • PDF