• Title/Summary/Keyword: Mixture ratios

Search Result 667, Processing Time 0.023 seconds

The Extraction of Nb from Nitric Acid Solution by Mixture of Tributylphosphate(TBP) and Dibutylphosphate(DBP) (窒酸溶液에서의 Tributylphosphate (TBP), Dibutylphosphate (DBP)混合物에 依한 Nb의 抽出)

  • Yung Kook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.38-41
    • /
    • 1963
  • Nb is one of the trouble-some fission products in the reprocessing of nuclear fuels. In this paper, the extraction of Nb from 1, 2, 3, 4, 6 and 9N $HNO_3$ solution by mixtures of TBP and DBP in dodecane are reported. Sums of the concentration of TBP and DBP are kept to 20%. When the concentrations of DBP are lower the $2{\times}10^{-2}%$, distribution ratios are almost same, and ratios increase abruptly and the slope is about 2.5 at between $2{\times}10^{-2}$ to $4{\times}10^{-1}%$, then slope falls down to about 0.5. There is aging effect on mixture of TBP and DBP.

  • PDF

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

FT-IR analysis of flame resistant chemical mixture

  • Kim, Younsu;Seo, Jihyung;Choe, Yoong Kee;Sohn, Youngku;Kim, Jeongkwon
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • In this study, flame retardant mixtures of decabromodiphenylethane (DBDPE) and Sb2O3 were analyzed using Fourier transform infrared (FT-IR) spectroscopy. The experimentally obtained wavenumbers of DBDPE and Sb2O3 were 1321 and 949 cm-1, respectively, whereas those obtained by theoretical calculation were 1370 and 818 cm-1, respectively. Strong correlation was observed between the mixing molar ratios and observed peak area ratios, suggesting that FT-IR analysis can be used to obtain relative amounts of the individual components of flame retardant mixture.

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Kim, You-Chan;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.391-401
    • /
    • 2017
  • In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.

Determination of Ratios of Natural Ingredients for Loess(Hwangtoh) as Environmental-Friendly materials (친환경 건축자재로서 황토마감재 개발을 위한 천연혼화재 비율설정에 관한 연구)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2006
  • With people's awareness of environment-friendly buildings recently increasing, there is a need to develop environment-friendly construction materials to reduce indoorair pollution levels. Thus, efforts to develop loess finishing materials that can replace the finishing materials currently being used (e.g., gypsum boards and chemical products) are underway. An analysis of the characteristics of domestic loess products,however, revealed that the cracks on loess products can be lessened and their strength can be improved by adding chemical ingredients to them. Thus, this research sought to use 100% natural materials and to develop loess finishing materials. In the experiments that were conducted in this study, appropriate mixture ratios of loess and sand/silica sand were found, and cracks and contraction ratio changes in samples were analyzed by differentiating the ratios of natural ingredients, such as lime, fine jute threads, gypsum, and jute cuttings. Loess'particle size distribution was found to have a high correlation with loess decoration, and it was discovered that the mixture of lime and fine chute threads could improve the contraction ratio. Through this study, which made use of natural ingredients, environment-friendly construction materials that can exercise the original function of loess were developed.

Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules (바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Comparison of Quality of Model Tomato Sauces Produced with Different Mixture Ratios of Fresh Tomatoes and Canned Tomatoes (신선한 토마토와 통조림 토마토의 배합 비율을 달리하여 제조한 모델 토마토 소스의 품질 비교)

  • Ha, Dae-Joong;Kwak, Eun-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.5
    • /
    • pp.791-797
    • /
    • 2009
  • We investigated the quality and sensory characteristics of model tomato sauces which was made from fresh Vitaking tomatoes and American canned tomatoes in the mixture ratios of 0:100% ($S_1$), 25:75% ($S_2$), 50:50% ($S_3$), 75:25% ($S_4$) and 100:0% ($S_5$). Soluble solids, reducing sugars, vitamin C and organic acids increased as the contents of fresh tomatoes increased. pH and contents of $\beta$-carotene and lycopene decreased as the contents of fresh tomatoes increased. Lightness(L value) and yellowness (b value) increased as the contents of fresh tomatoes increased whereas redness (a value) didn't show any significant differences among samples. In the preference test, $S_3$ was the most preferred in red color, taste and overall preference. In the descriptive test, $S_1$ ranked the highest in redness, viscosity, palatability and flavor except for sweet and sour taste. $S_5$ was the lowest in redness, viscosity and palatability, being the highest in sour taste. From this result, we found that the mixture ratio of half fresh tomatoes and canned tomatoes was the best condition to make tomato sauce with preferred red color.

  • PDF