• Title/Summary/Keyword: Mixture optimization

Search Result 273, Processing Time 0.028 seconds

Optimization of Fractionation Conditions for Natural Organic Matter in Water by DAX-8 Resin and its Application to Environmental Samples (DAX-8 레진의 수중 자연유기물의 분획조건 최적화 및 환경시료에의 적용)

  • Lim, Hyebin;Hur, Jin;Kim, Joowon;Shin, Hyunsang
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • Natural organic matter (NOM) is a heterogeneous mixture of organic matter with various polarities and molecular weights in an aquatic environment. This study investigated the effects of separation conditions (resin volume, organic matter, etc.) and the repeated use of the resin for the fractionation of organic components in the DAX resin fractionation method. The distribution characteristics of the organic components ((hydrophilic [Hi], hydrophobic acid [HoA], and hydrophobic neutral [HoN]) under the derived fractionation conditions were also analyzed. Constant fractionation results (i.e. HoA/Hi ratio) were obtained in the column capacity factor (i.e. the packed resin volume) in the range of 50 to 100. The resin-packed column maintained constant separation efficiency for up to two repeated uses. The above conditions were applied to wastewater and stream water samples (before and after rainfall). The results showed that the concentration of organic matter in the wastewater effluent was 2-15 times lower with an increased ratio of hydrophilicity to hydrophobicity (i.e. Ho/Hi) compared to the influent depending on the industrial wastewater classification. Particularly, HoN was found to have a high content distribution, 10.2-50.4% of the total dissolved organic matter (DOM), in the effluents. For the stream water, the content of Hi or HoN increased significantly after rainfall, suggesting a correlation with the distribution characteristics of pollutants from the stream watershed. The results provide useful data to enhance the reliability of the DAX resin fractionation and its application to environmental samples.

An approach to minimize reactivity penalty of Gd2O3 burnable absorber at the early stage of fuel burnup in Pressurized Water Reactor

  • Nabila, Umme Mahbuba;Sahadath, Md. Hossain;Hossain, Md. Towhid;Reza, Farshid
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3516-3525
    • /
    • 2022
  • The high capture cross-section (𝜎c) of Gadolinium (Gd-155 and Gd-157) causes reactivity penalty and swing at the initial stage of fuel burnup in Pressurized Water Reactor (PWR). The present study is concerned with the feasibility of the combination of mixed burnable poison with both low and high 𝜎c as an approach to minimize these effects. Two considered reference designs are fuel assemblies with 24 IBA rods of Gd2O3 and Er2O3 respectively. Models comprise nuclear fuel with a homogeneous mixture of Er2O3, AmO2, SmO2, and HfO2 with Gd2O3 as well as the coating of PaO2 and ZrB2 on the Gd2O3 pellet's outer surface. The infinite multiplication factor was determined and reactivity was calculated considering 3% neutron leakage rate. All models except Er2O3 and SmO2 showed expected results namely higher values of these parameters than the reference design of Gd2O3 at the early burnup period. The highest value was found for the model of PaO2 and Gd2O3 followed by ZrB2 and HfO2. The cycle burnup, discharge burnup, and cycle length for three batch refueling were calculated using Linear Reactivity Model (LRM). The pin power distribution, energy-dependent neutron flux and Fuel Temperature Coefficient (FTC) were also studied. An optimization of model 1 was carried out to investigate effects of different isotopic compositions of Gd2O3 and absorber coating thickness.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

Monte Carlo Simulation of Transmission-Type X-ray Tube with Dual-Structured Target (이중 적층 구조 표적을 갖는 투과형 엑스선관의 몬테카를로 전산모사)

  • Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • X-ray fluorescence analysis has been widely used in the field of science and industry because it gives information about elements and their concentrations without destruction of samples. To increase analysis accuracy of fluorescence generated by photons of the transmission-type X-ray tube for mixture and compound samples would be recommend to have strong energy near 10 keV and 20 keV simultaneously. Tungsten of 9.65 keV and molybdenum of 17.48 keV were considered as targets with dual deposition structure for obtaining two strong characteristic X-rays, and the transmission-type X-ray tube was analyzed using Geant4 Monte Carlo simulation. The W-Mo structure resulted in strong characteristic X-ray near 10 keV and 20 keV simultaneously. A structure with Mo-W multilayers of 5 ㎛ thick also gave optimal spectrum. Various material combination and thickness optimization for the dual-structured target can give X-ray spectrum with strong characteristic X-ray of specific energies.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells

  • Hyuk Cheol Kwon;Hyun Su Jung;Do Hyun Kim;Jong Hyeon Han;Seo Gu Han;Dong Hyun Keum;Seong Joon Hong;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1757-1768
    • /
    • 2023
  • Objective: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. Methods: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17β-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. Results: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17β-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. Conclusion: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

Effects of Natural Extract Mixtures on the Quality Characteristics of Sausages during Refrigerated Storage

  • Seung-Hye Woo;Min Kyung Park;Min-Cheol Kang;Tae-Kyung Kim;Yea-Ji Kim;Dong-Min Shin;Su-Kyung Ku;HeeJin Park;Heeyoung Lee;Jung-Min Sung;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.146-164
    • /
    • 2024
  • Owing to the residual toxicity and adverse health effects of chemical preservatives, there is an increasing demand for using natural preservatives in food. Although many natural extracts have been evaluated, research on their antibacterial effects remains insufficient. Therefore, this study aimed to explore the possibility of developing Psidium guajava, Ecklonia cava, and Paeonia japonica (Makino) Miyabe & Takeda extracts as natural food preservatives. Further, the effect of mixing these extracts on microbial growth and quality was evaluated during the refrigeration of sausages. Optimal mixing ratios were determined based on the minimum inhibitory and bactericidal concentrations of each mixed extract against the Listeria monocytogenes, Salmonella spp. and Escherichia coli. D-optimal mixing design optimization tool was further used to obtain an optimum mixing ratio of Formulation 1 (F1). The antibacterial activity of F1 increased with increasing concentration, with similar activities at 0.5% and 1%. The sausages with synthetic or natural preservatives showed significantly lower lipid oxidation than those of the control and grapefruit extract-treated sausages after 4 wk of refrigeration. Total plate counts were observed only in the control and treatment groups stored for 3 wk, and no significant effect of ascorbic acid was observed. Compared to the other samples, sausages with added natural extracts showed the highest overall acceptability scores initially and after 4 wk. Therefore, similar amounts of grapefruit seed and natural extracts had the same effect on microbiological analysis and lipid rancidity during sausage storage. Hence, this mixture can serve as a potential natural preservative in meat products.

Lip-Synch System Optimization Using Class Dependent SCHMM (클래스 종속 반연속 HMM을 이용한 립싱크 시스템 최적화)

  • Lee, Sung-Hee;Park, Jun-Ho;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.312-318
    • /
    • 2006
  • The conventional lip-synch system has a two-step process, speech segmentation and recognition. However, the difficulty of speech segmentation procedure and the inaccuracy of training data set due to the segmentation lead to a significant Performance degradation in the system. To cope with that, the connected vowel recognition method using Head-Body-Tail (HBT) model is proposed. The HBT model which is appropriate for handling relatively small sized vocabulary tasks reflects co-articulation effect efficiently. Moreover the 7 vowels are merged into 3 classes having similar lip shape while the system is optimized by employing a class dependent SCHMM structure. Additionally in both end sides of each word which has large variations, 8 components Gaussian mixture model is directly used to improve the ability of representation. Though the proposed method reveals similar performance with respect to the CHMM based on the HBT structure. the number of parameters is reduced by 33.92%. This reduction makes it a computationally efficient method enabling real time operation.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF