• Title/Summary/Keyword: Mixture of two fluids

Search Result 37, Processing Time 0.023 seconds

Experimental Study on Heat Transfer Characteristics of Binary Working Fluid for Clean Large Cauldron Using Liquid-Vapor Phase Change Heat (기-액 상변화 열전달을 이용한 대형 조리용기 개발을 위한 2 성분 작동유체의 열전달 특성실험)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.899-905
    • /
    • 2014
  • This paper describes preliminary research conducted for developing a high-efficiency clean large cauldron using the liquid-vapor phase change heat transfer. To improve the isothermal environment of the cauldron, naphthalene and FC-40 were selected as the working fluids to operate well in the temperature range of $100-200^{\circ}C$ and used in experimental investigations of the heat transfer characteristics. A two-phase closed thermosyphon was designed and built to demonstrate the functionality of the working fluids. Startup, boiling, and condensation tests were performed, and the test results were used to examine the possibility of complementary effects of the startup and heat transfer characteristics of the two-phase closed thermosyphon using a mixture of naphthalene and FC-40.

Competitive Adsorption for Binary Mixture of 4-Nitrophenol and Phenol on RSTA using GAC (GAC를 이용한 RSTA에서 Phenol과 4-Nitrophenol의 이성분계 경쟁흡착)

  • Lee, Seung-Mok;Kim, Dae-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.723-731
    • /
    • 2000
  • In recent years, the amount and number of synthetic organic compounds(SOCs) discharged from various industries has been increasing. Granular activated carbon(GAC) adsorption is one of the best available technology to remove SOCs from water supplies and wastewater. In this paper competitive adsorption for binary mixture of 4-nitrophenol and phenol on reverse stratified tapered adsorber(RSTA) using GAC was studied. Two isotherm experiments were conducted, one for phenol and the other for 4-nitrophenol. The phenol data of binary mixture isotherm were not fitted to Freundlich isotherm. The competitive adsorption increased significantly with decreasing carbon dose and increasing adsorbate concentration. The RSTA was found to provide an increase in breakthrough time when decreasing flow rate, increasing angle and injection layers. The performance enhancement provided by RSTA can be exploited in separation and in the purification of fluids.

  • PDF

Pharmacokinetic Evaluation of Flurbiprofen Sustained Release Capsule (플루르비프로펜 서방캅셀의 약물속도론적 평가)

  • Park, Kyoung-Ho;Lee, Min-Hwa;Yang, Min-Yeol;Lee, Chong-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • In vitro dissolution test and pharmacokinetic study in human volunteers were conducted to evaluate the pharmacokinetic characteristics of 150 mg furbiprofen sustained-release capsule (FPSR-150). As a reference product, 50 mg flurbiprofen conventional-release capsule (FPCR-50) was used. Dissolution tests of two products were run using the paddle method in 450 : 540 (v/v %) mixture of simulated gastric and intestinal fluids (K.P. VI) by adjusting medium pH according to time. FPCR-50 was dissolved very rapidly, and it took about 1.5 hr for FPCR-50 to be dissolved over 90%, whereas 15 hr for FPSR-150. Also, in pharmacokinetic study, ten healthy male volunteers were administered one capsule of FPSR-150 or two capsules of FPCR-50 (FPCR-l00) with randomized two period cross-over study. Significant differences between FPCR-l00 and FPSR-150 were found in mean times to reach peak concentration, mean resident times and mean terminal phase halflives, while not in AUC/Dose (Student's t-test). In ANOVA for AUC/Dose to compare the bioavailabilities of two FP products, there was no significant difference. From the comparison of the simulated steady-state plasma concentration-time curves following multiple medications of FPCR-50 (3 capsules a day, dosing interval=8 hrs) and FPSR-150 (1 capsule a day) based on the above results obtained from single doses of two FP products, it was noted that the medication of FPSR-150 is more useful in clinical application rather than FPCR-50.

  • PDF

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Validation of an Extraction Method for the Determination of Airborne MWFs using Alternative Solvents (대체용매를 이용한 금속가공유 측정방법 타당성 평가)

  • Jeong, Jee Yeon;Baek, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.91-100
    • /
    • 2006
  • The purpose of this study was to validate alternative method by using non-carcinogenic, and less toxic solvents than NIOSH analytical method 5524 for measuring the airborne MWFs in workplaces. In laboratory tests, the ETM solvents(mixture of same volume for ethyl ether, toluene, and ethanol) were selected. The alternative method of analyzing MWFs, referred to as the ETM solvent extraction method, showed 0.04 mg/sample as LOD, and 0.15 mg/sample as LOQ. The analytical precision (pooled CV, coefficient of variation) of the ETM solvent extraction method for analyzing the straight, soluble, semisynthetic, and synthetic metalworking fluid was 1.5%, 2.0%, 2.6%, 1.6%, respectively, which was similar to the precision (2.6%) of NIOSH analytical method (NIOSH 0500) for total dust. The analytical accuracy by recovery test, spiked mass calculated as extractable mass, was almost 100%. As the result of storage stability test, metalworking fluid samples should be stored in refrigerated condition, and be analyzed in two weeks after sampling. The 95% confidence limit of the estimated total standard error for the ETM solvent extraction method for analyzing the straight, soluble, semisynthetic, and synthetic metalworking fluid was ${\pm}12.6%$, ${\pm}12.5%$, ${\pm}14.0%$, and ${\pm}13.6%$, respectively, which satisfied the OSHA sampling and analytical criteria.

Recent Emulsion Technology in Cosmetics (화장품용 유화 제조기술 최근동향)

  • Hwang, So-Ra;Nam, Jin-Oh;Lee, Byung-Jin;Song, Woo-Ho;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.207-214
    • /
    • 2012
  • Emulsions are mixture of immiscible liquids in which one is dispersed in all over the other. They have been applied to many applications including cosmetics, foods, drug delivery system (DDS), fine chemicals, and chemical separations. Especially, emulsion technology is one of the most useful technique to formulate cosmetics such as eye cream, foundation, and foam cleansing. In general, the emulsions can be generated by mechanical agitation of two immiscible fluids. However, the emulsions obtained by conventional method have limited in stability, monodispersity, and complicate process. We describe here preparation techniques of representative cosmetic emulsions such as liposome, liquid crystal emulsion, nanoemulsion, multiple emulsion, and pickering emulsion. Furthermore, various factors which can control the physical properties of each cosmetic emulsions are briefly discussed.

A Study on the High Temperature Thermal Conductivity Measurement of Nanofluid Using a Two-Phase Model (2상 모델을 이용한 나노유체의 고온 열전도도 측정 연구)

  • Park, Sang-Il;Lee, Wook-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.153-156
    • /
    • 2010
  • The effective thermal conductivity of two-phase materials such as unbonded silica sands saturated with a nanofluid was measured at high temperature using the transient thermal probe method. The nanofluid used in this study was a water-based mixture of 0.1 vol% $Al_2O_3$ nanoparticles with a diameter of 45 nm. The convection problem for fluids was prevented with this measurement method because the fluid was confined to within very small pore spaces. Based on the prediction model for unbonded sands, the thermal conductivities of the saturating nanofluid at high temperatures could be determined with the measured effective thermal conductivities for the two-phase material. In the results, increases in the thermal conductivity ratios of the nanofluid to pure water when temperatures were varied from $30^{\circ}$ to $80^{\circ}C$ were within the range of 4.87%~5.48%.