• Title/Summary/Keyword: Mixture Theory

Search Result 306, Processing Time 0.022 seconds

A Study on Bubbly Lubrication of High-Speed proceeding Bearing Considering Live Surface Tension

  • Chun, S.-M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.111-112
    • /
    • 2002
  • The influence of aerated oil on a high-speed proceeding bearing is examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing including the live surface tension of aerated oil. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil aeration level, air bubble size and shaft speed. The results show that, if the live surface tension is considered, the effect of air bubbles on the bearing load capacity is reduced due to temperature engagement comparing with that under the condition of a constant surface tension.

  • PDF

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

Derivation of The New Type of Mean Density Approximation (NTMDA) Using Molecular Dynamics Method (분자동력학법(Molecular Dynamics)을 이용한 새로운 평균밀도근사법(NTMDA)의 유도)

  • Kwon, Yong Jung
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.9-13
    • /
    • 1990
  • The approximation of the radial distribution functions(RDF) of mixture plays an important role in deriving the mixing rules for the corresponding states principle(CSP). The mean density approximation(MDA), one of the most successful approximations, fails to predict the radial distribution functions when the size ratio in terms of the Lennard-Jones size parameters is greater than 1.5. To get a better prediction of important structural integrals over the radial distribution functions that arise in the asymmetrical attraction contribution of the perturbaton theory, the new type of mean density approximation(NTMDA) is proposed. With this NTMDA, quite reliable results for those integrals for systems with comparatively large ratio of the size parameters are obtained.

  • PDF

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes (固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

Pulsed Energy Dependent Neutron Transport Theory

  • Minn, Hokee
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.249-254
    • /
    • 1970
  • A time-energy transient characteristics of pulsed neutron transport problem with an inelastic kernel in the fast domain is solved exactly with a continuous energy transfer operator. A discrete time eigenvalue is found which is asymptotically dominant. The complete solution consists of three parts: a time-energy separable mode which is asymptotically dominant and a non-separable mode which is made up by two parts; a pure energy slowing-down transient and a mixture of time and energy transient which is negligible asymptotically.

  • PDF

The Effect of Eccentricity on Aerated Oil in High-Speed Journal Bearing

  • Chun, Sang Myung
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The influence of aerated oil on a high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction force may be changed so visibly for the high speed bearing operation.

  • PDF

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.