• 제목/요약/키워드: Mixture Theory

검색결과 306건 처리시간 0.021초

폴리(아크릴로니트릴-비닐포스포닉산) 공중합체 막을 이용한 피리딘-물 혼합물의 투과증발분리 (Pervaporation of Pyridine-Water Mixture throuoh Poly(acrylonitrile-co-vinyl phosphonic acid) membrane)

  • 박춘호;남상용;김원;이영무
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.89-92
    • /
    • 1998
  • 1. Introduction : Among many azeotropic compounds, pyridine which forms an azeotropic mixture with three moles of water boiling at 92-93$\circ$C is very useful synthetic intermediate in laboratory and industry. With conventional separation method, the dehydration of pyridine aqueous solution is difficult and requires strong drying chemicals. To overcome these difficulties, several researchers have investigated on the separation of pyridine from aqueous solution through polymer membranes. Kujawski reported several ion-exchang membranes containing carboxylic and sulfonic fuctional group for dehydration of aqueous pyridine solution [1]. We have applied the idea of activation of water tranport through ion-dipole interactions between polymer membrane and aclueous feed. Our previous studies reported on the in-situ complex membrane to separate water from aqueous pyridine solution based on simple acid'-base theory [2, 3]. Water transport was enhanced through in-situ complex formation between the , acid moiety in the membrane and the incoming pyridine moiety in the feed.

  • PDF

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

티셔츠 디자인에 대한 분석 (An Analysis on T-shirts Design)

  • 최정화
    • 한국의류학회지
    • /
    • 제29권11호
    • /
    • pp.1410-1420
    • /
    • 2005
  • The purpose of this study was to analyze characteristics of effective expression on T-shirts pattern by peirce's semiotic theory. The methods of this study was to analyze 721 T-shirts patterns in designer's collection from 2000 to 2004. The results of this study were as follows: First of all, iconic expression showed high frequency after 2000. Characteristics of effective expression were as follows: In geometric expression, repetition was presented as a symbolic sign by regular proportion and rule of dot, line, plane, irregularity, mixture of irregular dot, line, plane. Mixed expression was presented as a iconic and symbolic sign by collage, mixture of dot, line, plane, icon and letter. In iconic expression, simplification of iconic sigrl was presented as a iconic sign by simplification of form, color, texture, realistic expression using digital as a iconic sign, and symbolic face, body as a symbolic sign. Pop art's expression was presented as a iconic sign by a cartoon and commercial character and illusion was presented as a iconic sign. In letter's expression, brand logo was presented as a symbolic sign by transformation of letter's design, a symbolic sign of numeral by transformation of size, thickness, form, color. Symbolic message phrase was presented by slogan, fashion trend, brand image, descriptive indication message as a index sign by using icon or singleness. In conclusion, characteristics of effective expression on T-shirts pattern will present not only the theoretical foundation to raise the value added, but also the information about beauty sense of times, political and social value.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권4호
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed;Safer Omar;Dahmane Mouloud;Hassene Daouadji Nouria;Alex Li;Benyahia Amar;Boubekeur Toufik;Badache Abdelhak
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.127-142
    • /
    • 2024
  • The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.