• Title/Summary/Keyword: Mixture Behavior

Search Result 882, Processing Time 0.029 seconds

Low Temperature Synthesis of Willemite Powder (Willemite 분말의 저온합성)

  • Son, Se-Gu;Lee, Ji-Hyeon;Lee, Jeong-Mi;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.401-404
    • /
    • 2008
  • Willemite ($Zn_2SiO_4$) are a wide range of applications such as a phosphor host and an important crystalline phase in glass ceramics, electrical insulators, glazes, and pigments. In this study, Willemite precursors were synthesized with zinc silicate gels from mixture of zinc nitrate solution and various sodium silicate solution by the geopolymer technique. To examine the crystallization behavior, precursors were have been monitored by the XRD. A pure willemite phase was obtained at $900^{\circ}C$. TEM investigations revealed that the sample with 50 nm particle size was obtained via heat-treated at $900^{\circ}C$ for W-3.

Textural Characterization of Gel Layer Thickness and Swelling Boundary in a Hydrophilic Compact (친수성 정제의 겔층두께와 겔팽창 영역의 조직 특성화)

  • Kim, Hyun-Jo;Fassihi, Reza
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • This study was to investigate the relationship between the gel layer thickness and swelling boundary via strength measurements using texture analysis. The novel texture analysis approach was used to examine the dynamics of swelling behavior in a ternary polymeric matrix tablet. The method permitted the characterization of the changes occurring at the peripheral as well as within interior boundary of the swelling during water ingress. The increase in gel strength for pectin, HPMC, and a ternary mixture with gelatin was found to depend on polymer concentration. Therefore, this method is further applicable to characterize the swelling behavior and provide opportunity to differentiate the gel-layer from that of swelling boundary.

  • PDF

Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System (분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션)

  • Wang, W.K.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

A Quasi-Chemical Inter and Intra Molecular Association Nonrandom Lattice Model for Surfactant Systems (계면활성제계를 위한 준화학 분자내외부 회합 비무질서도 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.485-488
    • /
    • 2011
  • Intramolecular association is an important contribution to the overall hydrogen bonding in supercritical fluid systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intramolecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The present EOS could correlate the literature data well for mixtures containing nonionic surfactant systems.

  • PDF

Hydrogen Behavior at a Subcomparment in The Containment Building

  • Lee, U.J.;Park, G.C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.495-500
    • /
    • 1997
  • For hydrogen management in severe accidents with degraded nuclear core of PWR's, several experiments have been performed in the SNU hydrogen mixing facility. The objectives are understanding the extent of hydrogen mixing and analyzing the effects of factors which dominate uniform or non-uniform mixing at compartments in the containment building. The facility represents on a 1/11th linearly scaled model of the YGN unit 3&4, hydrogen was simulated by helium. Because there are the gaps between safety injection tank and compartment layers in the containment, the test facility was constructed in three dimentinal mode for analyzing of mixture behavior through the gaps. From the experimental results we could conclude that overall hydrogen concentration distributed uniformly in the free volume of the test compartment, but fluctuated in the gaps. This paper is focused on experimental result from several experiment.

  • PDF

Oxidation Behavior of WC-Co Hardmetal (WC-Co 초경합금의 산화거동)

  • 이길근;권한상;하국현
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2004
  • The oxidation behavior of 91 WC-9Co hardmetal in weight percentage has been studied in the present work as a part of the development of recycling process. The morphological and compositional changes of the WC-Co hardmetal with oxidation time at 90$0^{\circ}C$ were analyzed by using surface observation and X-ray diffraction. respective]y. As the oxidation time increased, the WC-Co hardmetal was continuously expanded to form porous oxide mixtures of $CoWO_4$ and $WO_3$. The morphology of porous oxide mixture was basically dependent on initial shape of the WC-Co hardmetal. From thermo-gravimetric (TG) analysis, it was found that the oxidation rate was increased with increasing oxidation temperature and oxygen content in the flowing atmospheric gas. The fraction of oxidation versus time curves showed S-curve relationship at a given of oxidation temperature. These oxidation behaviors of the WC-Co hardmetal were discussed in terms of previously proposed kinetic models.

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.

Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

  • Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.206-212
    • /
    • 2016
  • Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng-Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF