• Title/Summary/Keyword: Mixing height

Search Result 291, Processing Time 0.028 seconds

Thermal environment evaluation of KBS open hall with mixing ventilation and downward displacement ventilation systems (혼합환기와 하향 압출환기시스템이 동반된 KBS공개홀의 온열환경 평가)

  • 권용일;권순석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • This study was carried out for evaluating the interior thermal environment in KBS Open hall with large ceiling height and large space. Ventilation systems of KBS Open hall have combined mixing ventilation and downward displacement ventilation system. Temperature and velocity was measured 130 locations with low level(0.1m), mid level(0.6m) and high level(1.1m). But relative humidity was measured at 15 locations. The subjective thermal sensation was made an inquiry of occupancy at the location measured physical elements.

  • PDF

Study on Microchannel Fabrication using RP and Experiment on Stirring Characteristics in it (RP에 의한 마이크로 채널 제작과 채널내 혼합에 대한 성능평가)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1016-1020
    • /
    • 2003
  • In this paper, we present a technology of producing anew chaotic micromixer, named Micromixer with Arranged Blocks(MAB), and the experimental result of the mixing performance. Chaotic mixing was successfully achieved by introducing periodic perturbation in the field of the channel flow by means of slanted blocks. The MAB was made by an RP(Rapid Prototyping) technology. We performed flow visualization experiments for the quantification of the mixing performance with the MAB. Lyapunov exponent was measured to be 0.3557 and 0.1305 for the block height 0.8 and 0.2 times the channel width.

  • PDF

Experiments of Turbulent Thermal Mixing Phenomena Using Parallel Non-Isothermal Water Jets

  • Kim, Y.K.;Kim, J.M.;Lee, Y.B.;J.S. Hwang;H.Y. Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.36-41
    • /
    • 1996
  • Turbulent thermal mixing experiments by the injection of two parallel non-isothermal water jets have been performed. The turbulent velocities and fluctuations under the isothermal conditions have been measured using LDV system. The velocity vectors have been plotted in two dimensions from the data measured at 29$\times$16 points. The thermal mixing experiments also have been conducted, where we used 45 K-type thermocouples with a sheath diameter of 0.020" which were fixed with 5 mm distance in a line at a measured height. The measured heights were 5, 10, 20, 30, 40 cm from the upper end of rectangular nozzles. We measured the turbulent temperatures under the various flow velocity conditions with 12$^{\circ}C$ $\leq$ $\Delta$T $\leq$4$0^{\circ}C$. The sampling frequency and sampling time were about 420 Hz and 10 seconds, respectively. The measured results of equal velocity parallel jets were analyzed axially and radially to obtain the variation of temperature fluctuation.tion.

  • PDF

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.378-385
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

  • PDF

Evaluation on Adaptation of Zosia japonica as Effected by Different Green Roof System under Rainfed Conditon (무관수 옥상녹화시스템의 차이에 따른 들잔디 적응성 평가)

  • Ju, Jin-Hee;Kim, Won-Tae;Choi, Woo-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1137-1142
    • /
    • 2010
  • This study proposes a guideline of a green roof system suitable for the local environment by verifying the growth of Zoysia japonica in a shallow, extensive, green roof system under rainfed condition. The experimental soil substrates into which excellent drought tolerance and creeping Z. japonica was planted were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$). The plant height, green coverage ratio, fresh weight, dry weight and chlorophyll contents of Z. japonica were investigated. For the soil thickness of 15cm, the plant height of Z. japonica was significantly as affected by the soil mixing ratio and it was shown in the order SL= $P_4P_4L_2$ < $P_7P_1L_2$ = $P_5P_3L_2$ < $P_6P_2L_2$. For the soil thickness of 25cm, the plant height was increased in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was not observed by soil the mixing ratio or soil thickness. However, the green coverage ratio was 86~90% with a good coverage rate overall. The chlorophyll contents of Z. japonica were not significantly affected by the soil mixing ratio in the soil thickness of 15cm, but were higher in the natural soil than in the artificial soil at 25cm soil thickness. The fresh weight and dry weight of Zoysia japonica were heavier in the 25cm thickness than in the 15cm thickness and in the artificial soil mixture than in the natural soil. The result indicated that the growth of Zoysia japonica was more effective in the 25cm soil thickness with artificial soil than in the 15cm soil thickness with natural soil in the green roof system under rainfed condition.

A Study on the Sensitivity Analysis of Line Source Air Quality Models (移動汚染源에 대한 大氣擴散模型의 感應度 分析에 관한 硏究 (HIWAY2, PAL, CALINE3 模型을 對象으로))

  • 김선태;김병태;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • The sensitivity analysis is a method to quantify to what extent the output of a model changes with the values of input parameters. This will lead to increase model accuracy through measurement validation. Three line source air quality models, HIWAY 2, PAL, and CALINE 3 were selected for this study. The input parameters analysed included wind speed, wind direction, stability, emission rate, mixing height, receptor distance, initial dispersion coefficient, surface roughness, and averaging time. It turned out that PAL model generally showed higher concentration than other two models, and that between CALINE 3 and HIWAY 2, CALINE 3 showed higher concentration than HIWAY 2 model near the line sources, but beyond a certain downwind distances HIWAY 2 model showed higher concentration. The modesl were very sensitive to wind speed especially in the range of 0 $\sim$ 1 m/s and to wind direction near the parallel wind to streets. In case of emission rate, the output concentration was directly proportional to these input parameters. And the sensitivity of the input parameters such as stability, mixing height, initial dispersion coefficient, surface roughness, and averaging time were not very significant.

  • PDF

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF (CALPUFF 모델을 이용한 기후변화에 따른 일산화탄소의 대기오염 영향 분석)

  • Ha, Minjin;Lee, Taekyeong;Lee, Im Hack;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.81-89
    • /
    • 2017
  • In this study CALPUFF was used to estimate the influence of temperature rise, according to the observation value of temperature rise based RCP scenario, on meteorological elements (wind direction, wind speed, mixing height) and the change of pollutant diffusion. According to the result. applying estimated value of year 2050 temperature rise, the mixing height is increased as per the temperature rise, so the range of atmospheric diffusion is widened. In summer case, by applying temperature rise of $4^{\circ}C$ and comparing with before applying temperature rise, there was change of diffusion range as per the change of temperature between 10 AM to 11 PM. And the range of diffusion was wider than that of before temperature rise. In winter case, by applying estimated value of temperature rise, $2.3^{\circ}C$, diffusion range has been changed between 8 AM to 4 PM, showing different diffusion aspect from summer. Also, according to the result of air pollution level assessment with temperature rise, it was proved that the ratio of area with increasing air pollution level has been getting higher by increase of temperature.

Influence of Mixing and Construction Factor on the Bleeding of Concrete (콘크리트의 블리딩에 미치는 배합 및 시공요인의 영향)

  • 황인성;김경민;전충근;신병철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.265-268
    • /
    • 2002
  • This study is focused on the influence of mixture and construction factor on bleeding amount of concrete According to the results, Amount of bleeding with mixture factor increases with increase of water contents and W/C. Amount of bleeding with construction factors is larger in the case of placing height of 1m than in the case of placing height of 0 and 0.5m. Amount of bleeding is larger at the temperature of 20℃ than at the temperature of 35℃ and 5℃, and increases in order of vibration compacting, standard lamping and non tamping. Therefore, to reduce bleeding, it is thought that it is profitable to reduce water content within the range that fluidity and workability don't go bad, to lower the placing height and not to do compacting too much.

  • PDF