• Title/Summary/Keyword: Mixing Time

Search Result 1,939, Processing Time 0.03 seconds

Design and Implementation of a Multipoint VoIP in Ubiquitous Environment (유비쿼터스 환경에서의 효율적인 다자간 VoIP의 설계 및 구현)

  • Seong, Dong-Su;Lee, Sung-Min
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.481-492
    • /
    • 2007
  • The ubiquitous environment allows users to communicate with others and to have access to computing service any time, any place. Multipoint VoIP is expected to be one of the loading applications in this environment. The paper compares various conference models for efficient VoIP service in ubiquitous environment and shows why the endpoint mixing model performs effectively in this environment. However, the endpoint mixing model has its own drawbacks as well and we propose solutions to solve the problems.

The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand

  • Arasan, Seracettin;Nasirpur, Omid
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.361-375
    • /
    • 2015
  • Constructions over soft and loose soils are one of the most frequent problems in many parts of the world. Cement and cement-lime mixture have been widely used for decades to improve the strength of these soils with the deep soil mixing method. In this study, to investigate the freeze-thaw effect of sand improved by polymers (i.e., styrene-acrylic-copolymer-SACP, polyvinyl acetate-PVAc and xanthan gum) and fly ash, unconfined compression tests were performed on specimens which were exposed to freeze-thaw cycles and on specimens which were not exposed to freeze-thaw cycles. The laboratory test results concluded that the unconfined compressive strength increased with the increase of polymer ratio and curing time, whereas, the changes on unconfined compressive strength with increase of freeze-thaw cycles were insignificant. The overall evaluation of results has revealed that polymers containing fly ash is a good promise and potential as a candidate for deep soil mixing application.

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Study on the Development of Standard Reference Materials for Safety Control of Construction Materials (건설재료의 안전적 제어를 위한 표준물질 (Standard Reference Materials) 도출)

  • Lee, Dong Kyu;Lee, Keon Woo;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.54-61
    • /
    • 2017
  • The purpose of this study is to develop standard reference materials for safety control of construction materials considering the required performance of standard materials including flow performance incorporating particles. The flow characteristics of concrete are very complicated depending on mixing proportions of constituent materials, admixtures, amount of mixing, type of mixer, time of mixing, temperature and so forth. Uncertainties and multidimensional properties of concrete have been evaluated through various studies but there are few researches for the development of standard reference material. In this study, based on the rheological concept, the flow performance of construction materials was evaluated to understand the properties of standard reference materials and was finally obtained representing materials which simulate the standard reference materials.

The Effects of Sputtering conditions in Pre Sputtering on the Formation Behavior of Nitride Layer in the Ion Nitriding of Stainless Steel (초기 스퍼터링조건이 스테인리스강의 이온질화시 지로하층 형성거동에 미치는 영향)

  • 최상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.197-203
    • /
    • 1999
  • Stainless steels in general has passive film having strong corrosion resistance on surface. Therefore it must be necessarily removed by etching in mixing solution of sulfuric and chloric acid before Nitriding treatment. But in the ion nitriding, nitride layer was easily formed because passive film was removed without difficult by sputtering effect. The removal extent of these passive films was greatly effected by gas mixing ratios and pressure and holding times of pre sputtering factors in pre sputtering stage. As a results of experiment it has been known that pre sputtering pressure and holding time was not nearly effective on the formation behavior of nitride layer. But when A/H2 gas mixing ratios was 1/2 (vol%) was the most effective of the all pre sputtering conditions. It was resulted from the combination of mechanical reaction byArgon bombardment and chemical reaction by reduction of hydrogen on the passive film.

  • PDF

Statistical Analysis of the Meteorological Elements for Ozone and Development of the Simplified Model for Ozone Concentration (오존 농도에 영향을 미치는 주 기상요소의 도출 및 예측모형 수립)

  • 전의찬;우정헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.257-266
    • /
    • 1999
  • In order to analyze the effect of meteorological elements on ozone concentration, we carried out cross-correlation of the elements with ozone concentraton, and time series analysis on them. As a result, it revealed that temperature, wind speed and humidity are not independent variables with ozone concentrations, and also, solar radiation and mixing height are the major elements that affect them. We developed models for ozone with solar radiation and mixing height as dependent variables to verify the effect of major meteorological elements. The predicted ozone concentration has strong correlation coefficients, So, We could conclude that we can predict ozone concentreation only with solar raidation and mixing height as dependents.

  • PDF

Optimization of Cholesterol Removal by Crosslinked ${\beta}$-Cyclodextrin in Egg Yolk

  • Jung, Tae-Hee;Park, Heung-Sik;Kwak, Hae-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.793-797
    • /
    • 2005
  • Optimum conditions for cholesterol removal in egg yolk were evaluated based on ratio of egg yolk-to-water, crosslinked ${\beta}$-cyclodextrin (${\beta}$-CD) concentration, and mixing temperature, time, and speed by adding crosslinked ${\beta}$-CD treated with adipic acid. Cholesterol removal in egg yolk-water mixture increased with increasing ${\beta}$-CD level (10-25%). About 95% was removed by 25% ${\beta}$-CD at 1:1 ratio of egg yolk-to-water and 800 rpm mixing at $40^{\circ}C$ for 30 min. In recycling study, removal rates were measured using ten times recycled crosslinked ${\beta}$-CD in egg yolk, and 85% cholesterol removal was observed with eight times reuse. These results indicated that over 90% cholesterol was removed at 1:1 ratio of egg yolk-to-water, 20% crosslinked ${\beta}$-CD addition, and 30 min mixing with 600 rpm at $40^{\circ}C$.

Strength Properties of Prepacked Polymer Mortar Using MMA-Based Binders (MMA를 이용한 프리팩트 폴리머 모르터의 강도특성)

  • Yeon, Kyu-Seok;Lee, Hyun-Jong;Ryu, Neung-Hwan;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.117-122
    • /
    • 2005
  • Prepacked polymer mortar that is mainly composed of MMA monomer and used for the patching and restoring materials of concrete structures was developed, and its hardening and strength properties were experimentally surveyed. Results of study show that the permeance of binder into the aggregate was excellent for the case of PMMA mixing ratio of below 10%, the surface hardening inferiority was not generated for the case of the ratio of over 5%. Working time of the prepacked polymer mortar and hardening shrinkage tended to decrease as the PMMA mixing ratio increased. On the other hand, the ratio turned out not to decisively affect on compressive and flexural strengths. Regardless of PMMA mixing content, the adhesive strength was about 2.5 MPa. Occurring the desquamation on the substrate of cement concrete showed the adhesive strength of MMA prepact polymer mortar was excellent.

  • PDF

Preparation and Properties of Magnesia-Alumina Spinel by SHS (SHS 법에 의한 Magnesia-Alumina Spinel 제조와 특성)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Self-Propagating high temperature synthesis(SHS) technique was used to synthesize the spinel phase of MgAl2O from MgO and Al powder. Processing factors such as mixing time preheating temperature and ignition catalyst were varied to determine the optimum condition to form MgAl2O4 phase. The reaction products were heat treated at the temperature range of 120$0^{\circ}C$ and 150$0^{\circ}C$. to observe phase transformation of unreacted materials. Processing factors such as 48 hrs-mixing 80$0^{\circ}C$-preheating and 20wt% KNO3-ignition catalyst were effective of the formation of MgAl2O spinel. An activation energy 49.7kcal/mol. was calculated to form a MaAl2O4 spinel from unreacted materials.

  • PDF

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.