• Title/Summary/Keyword: Mixing System

Search Result 1,780, Processing Time 0.03 seconds

A Study of Flow and Mixing in a Static Mixer (스태틱 믹서의 유동 및 혼합에 대한 연구)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Eom, Yong-Suk;Ra, Byeong- Yeol
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.557-562
    • /
    • 2001
  • Fluid mixing is ubiquitous and essential in many natural and industrial systems. Understanding the mixing processes that occur in these diverse system is essential for predicting many aspects of practical importance. The objective of this study is to perform the experimental and numerical investigation of the flow and mixing in a static mixer. Three different types of mixing elements, Sulzer, SSM and PPM were used. Glycerin and hydraulic oil were used as mixing fluids. Pressure drop was measured using a manometer.

  • PDF

An Experimental Study of Temperature Profiles in Mixing Zone of AHU with an Air Mixer (에어믹서가 설치된 공조기 혼합실 내의 온도분포에 관한 실험적 연구)

  • Pak, Kwon-Jong;Lee, Sek-Jun;Jang, Young-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.999-1006
    • /
    • 2006
  • A study of temperature profiles in mixing zone of AHU (air handling unit) can contribute greatly to enhance performance of AHU system, so the study on the temperature distribution between RA (return air) and OA (outdoor air) is important to analyze the mixing characteristics in a mixing zone of AHU. Accordingly, the temperature profiles during RA (return air) and OA (outdoor air) supply process into mixing zone of AHU with an air mixer are studied experimentally. The effect of air mixer, OA temperature and RA/OA flow rate are studied in detail. In this study, the results show that the mixing efficiency is all high for installed the air mixer. The more OA temperature increase and OA flow rate decrease, the more mixing efficiency is high.

A Study on Design of an Effective Micromixer using Horizontal and Vertical Multi-mixing (HVM) Flow Motion (상하좌우 복합유동 유도를 통한 고효율 HVM 마이크로 믹서 설계에 관한 연구)

  • Yoo, Won-Sui;Kim, Sung-Jin;Kang, Seok-Hoon;Kim, Pan-Guen;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.751-757
    • /
    • 2011
  • Subminiature devices such as Lab-on-a-chip and p-TAS(Micro Total Analysis System) have been intensively studied in biotechnology and chemistry, In many cases, a micromixer was widely used to mix different solutions for synthesizing novel materials. However, in microfluidic system, there is generally a laminar flow under very small Reynolds number so it is difficult to mix each solution perfectly. To settle this problem, we propose a new mixing mechanism which generates a horizontal and vertical multi-mixing (HVM) flow for effective mixing within a short mixing section. We evaluated the proposed mechanism using CFD analysis, and the results showed that the HVM mechanism had a relative high-effectiveness comparing to the existing methods.

Mixing effect on Properties of NTC Thermistor in Mn-Co-O System (Mn-Co-O계 NTC 써미스터의 물성에 미치는 혼합의 영향)

  • Yoon, Sang-Sik;Kim, Kyung-Sik;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.459-462
    • /
    • 2001
  • Interface effects on properties of NTC thermistors having Mn-Co-O spinel crytal structure system are analyzed by a mixing rule in case of mixed types and layered types between CuO and $Al_{2}O_{3}$ added compounds. With adding CuO and $Al_{2}O_{3}$, The compounds form completely solid solution and their resistance and B constant are changed due to the variation of conduction electrons by their ionic substitutions. The properties of mixed NTC thermistors are depended on the logarithmic mixing rule by a dispersed phase and they show slightly lower values due to the lattice mixing affect in compared with calculated values. The resistance of layered NTC thennistors is depended upon the series mixing rule containing the value of an interface layer and effected by the variation of its thickness, and it is changed rapidly to the logarithmic mixing rule by the connection between two layers with increasing the interface layer.

  • PDF

Numerical Investigation of the Flow and Mixing Characteristics with the Static Mixer in a Catalytic Combustor for the MCFC Power Plant System (MCFC 발전시스템 적용 촉매연소기의 혼합 특성 향상을 위한 Static Mixer의 유동에 관한 수치적 연구)

  • Kim, Chong-Min;Park, Nam-Seob;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • In this work a numerical study to find the characteristics of the internal flow and mixing process has been conducted in a static mixer used in the system of catalytic combustor of the fuel cell power plant. After introducing the model description and final governing equations the present numerical approach is applied to the analysis of static mixer, which may have one or more helical elements inside the circular tube by changing such various parameters as incoming mass flow rates and the number of helical elements. The results show that although the static mixer is efficient in mixing fuel and air, more optimization processes are required to achieve the appropriate mixing characteristics in front of the honeycomb type catalytic combustor used in the MCFC power plant

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

Analysis of Ocean Discharges of Municipal Water and its Near-Field Mixing Characteristics (도시 하수의 해양방류 및 근역혼합특성 분석)

  • 김강민;김지연;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.241-249
    • /
    • 2000
  • The amount of municipal water has been increased rapidly up to now and it is necessary to treat and dispose the wastewater effectively. The recent trend of the effluent disposal system, after treatment, show a nearshore discharge which has an outfall with length somewhere between the shoreline discharge and an extended deepwater outfall. There is no universal solution to municipal water treatment and disposal and each case must be examined on its merits and on economic, technical and environmental bases. In this study we focused mostly on the scientific and engineering aspects of ocean disposal through the outfall. For this purpose, we made an investigation to the near-field characteristics of discharged water and made some comparison with the existing experimental results. We also applied it to the Pusan Jungang Effluent Outfall System, which is planned to build in the Gamchun harbour and will be completed in 2011. The model output showed the trajectoral variation of dilution and mixing behavior for three cases of outfall system. Dilution differences have been simulated and found the highest dilution condition under the different displacement of outfall system. On the basis of these outputs it will be proposed the optimum outfall system type and location.

  • PDF

Flotation Efficiency of the DAF Pump System for Mixing and Coagulation Conditions in Raw Drinking Water (상수원수의 혼화 및 응집 조건에 따른 DAF pump 장치의 부상분리효율)

  • Ahn, Kab-Hwan;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.639-645
    • /
    • 2011
  • This study found that flotation efficiencies for removing algae and micro particles in raw water were optimized on mixing intensity and time of the mixing and flocculation conditions with a continuous DAF system. It is more efficient for mixing intensity at 23.1 $s^{-1}$ and time at 660 s(Gt value : 15246) to float flocculated floc with the raw water in M water treatment plant. Flotation efficiency was more than about 0.9 when operated pressure and A/S ratio were sustained at 5 $kg_f{\cdot}cm^{-2}$ and up to 0.056 $mL{\cdot}mg^{-1}$. The continuous DAF system made by the study could be continuously operated for 20 days and sustained not exceeding 4 NTU with raw water with low turbidity(13.4~9.8 NTU).

Optimization of the Mixing Flow in an Agitated Tank

  • Yoo, Dal-Hyun;Yang, Si-Young;Choi, Youn-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.151-157
    • /
    • 2005
  • In the chemical, mineral and electronics industries, mechanically stirred tanks are widely used for complex liquid and particle mixing processes. In order to understand the complex phenomena that occur in such tanks, it is necessary to investigate flow field in the vessel. Most difficulty on the numerical analysis of stirred tank flow field focused particularly on free surface analysis. In order to decrease the dead zone and improve the flow efficiency of a system with free surface, this paper presents a new method that overcomes free surface effects by properly combining the benefits of using experiment and 3-D CFD. This method is applied to study the mixing flow in an agitated tank. From the results of experimental studies using the PIV (particle image velocimetry) system, the distribution of mixing flow including free surface are obtained. And these values that are expressed as a velocity vector field have been patched for simulating the free surface. The results of velocity distribution obtained by 3-D CFD are compared with those of experimental results. The experimental data and the simulation results are in good agreement.

  • PDF

Critical Suspension Condition of Particles in a Shaking Vessel of Solid-Liquid System (고-액계 진동교반에서 입자의 부유화 한계조건)

  • Lee, Young-Sei;Kim, Moon-Gab;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Shake mixing has been widely used in cell culture. The mixing performance for shake mixing, however, has not been reported quantitatively. The critical circulating frequency and the power consumption for complete suspension of particles, based on the definition of Zwietering, were measured in a shaking vessel containing a solid-liquid system. The critical suspension frequency was correlated by the equation from Baldi's particle suspension model modified with the physical properties of the particles. Critical suspension frequency was correlated as following ; $$N_{JS}={\frac{0.58\;d{_p}^{0.06}(g{\Delta}{\rho}/{\rho}_L)^{0.004}X^{0.03}}{D^{0.35}d^{0.17}{\upsilon}^{0.04}}}$$ The power consumption at the critical suspension condition in the shaking vessel was less than that in an agitated vessel with impeller.

  • PDF