• Title/Summary/Keyword: Mixing Head

Search Result 138, Processing Time 0.025 seconds

INFLUENCES OF SILANE CONCENTRATION FOR FILLER SILANIZATION ON THE PROPERTIES OF COMPOSITES (필러의 실란처리농도가 복합레진의 특성에 미치는 영향)

  • 조태희;박상진
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.23-31
    • /
    • 2001
  • The purpose of this study was to search the optimal silane concentrations for filler- silanization of seven experimental composites. Silica filer was a 25micron crushed type. 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% silane($\gamma$-methacrylooxypropyltrimethoxysilane)were added into silica-filler with weight percentage (wt%). Mixtures(silica filler/silane)were reacted at 6$0^{\circ}C$ for 72hours, and crushed into fine particles those were used as fillers for 7 experimental composites. Monomer was a 3 : 1 mixture of Bis-GMA and TEGDMA containing 0.2% tertiary amine and 0.4% camphoroquinone for light curability. A ratio for mixing the monomer and filler was 75% and 25% respectively. Seven experimental composites was classified with the concentration of silane treated, and the specimen number for each test was 10. Specimens with 6mm diameter and 3mm height dimension for measuring the diametral tensile strength were destroyed with 1mm/min cross-head speed on Instron universal testing machine (No. 4467, USA). Shear bond strength was measured on the specimens bonded to bovine enamel etched with 37% phosphoric acid solution for 1 minute Fractured surfaces were observed by SEM (Hitachi S-3200, Japan) among that of the highest values measured from each groups. Following results were obtained: 1. Experimental composites containing silanized filter showed the significantly higher diametral tensile strength and shear bond strength than the composites containing un-silanized fillers(Group1) (p<0.05). 2. In silanized filler composite resins(Group 2~7), Diametral tensile strength of Group 3 showed the significantly higher than that of Group 2 and Group 6(p<0.05). 3. Shear bond strength was higher in Group 3 than that of Group 7 (p<0.05)in silanized fillers composite resins. 4. Fracture surface was formed in resin matrixes on the specimens from composites containing the fillers treated with 0.5% 1.0%, and 1.5% silane. These results mean that the optimal silane concentrations are exist for each fillet with its size and surface area, and that 1.0% is a optimal value for concentration to coat the 25$\mu\textrm{m}$ filler with silane.

  • PDF

Strengthening of conventional dental glass ionomer cement by addition of chitosan powders with low or high molecular weight (저/고분자량 키토산에 의한 종래형 치과용 글라스아이오노머 시멘트의 강화)

  • Kim, Dong-Ae;Kim, Gyu-Ri;Jun, Soo-Kyung;Lee, Jung-Hwan;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • The aim of this study was to investigate the effects of chitosan powder addition on the strengthening of conventional glass ionomer cement. Two types of chitosan powders with different molecular weight were mixed with conventional glass ionomer cement (GIC): low-molecular weight chitosan (CL; 50~190 kDa), high-molecular weight chitosan (CH; 310~375 kDa). The chitosan powders (CL and CH) were separately added into the GIC liquid (0.25-0.5 wt%) under magnetic stirring, or mixed with the GIC powder by ball-milling for 24 h using zirconia balls. The mixing ratio of prepared cement was 2:1 for powder to liquid. Net setting time of cements was measured by ISO 9917-1. The specimens for the compressive strength (CS; $4{\times}6mm$), diametral tensile strength (DTS; $6{\times}4mm$), three-point flexure (FS; $2{\times}2{\times}25mm$) with flexure modulus (FM) were obtained from cements at 1, 7, and 14 days after storing in distilled water at $(37{\pm}1)^{\circ}C$. All mechanical strength tests were conducted with a cross-head speed of 1 mm/min. Data were statistically analyzed by one-way ANOVA and Tukey HSD post-hoc test. The mechanical properties of conventional glass ionomer cement was significantly enhanced by addition of 0.5 wt% CL to cement liquid (CS, DTS), or by addition of 10 wt% CH (FS) to cement powder. The CL particles incorporated into the set cement were firmly bonded to the GIC matrix (SEM). Within the limitation of this study, the results indicated that chitosan powders can be successfully added to enhance the mechanical properties of conventional GIC.

Effects of Carbon Nanotube Addition on the Mechanical Properties of Dental Glassionomer Cement (탄소나노튜브 첨가에 의한 치과용 글라스아이오노머 시멘트의 기계적 특성)

  • Kim, Dong-Ae;Kim, Han-Sem;Shin, Ueon-Sang;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • The aim of this study was to investigate the effect of multiwall carbon nanotube functionalized with carboxyl group (MWCNT-COOH) on the mechanical properties of dental glassionomer cement (GIC). MWCNT-COOH was prepared by the acid oxidative method. The MWCNT-COOH was incorporated into a commercial GIC powder or liquid at 0.5 wt% or 1.0 wt%. The net setting time of the cements was measured in accordance with ISO 9917 (Dental water-based cement). Specimens for compressive strength ($4mm{\varphi}{\times}6mm$), diametral tensile strength ($6mm{\varphi}{\times}4mm$) and flexure strength with modulus ($2mm{\times}2mm{\times}25mm$) were prepared by mixing with the cement liquid and kept in water bath of $(37{\pm}1)^{\circ}C$. Mechanical tests were conducted in 1 d, 7 d, and 14 days at a cross-head speed of 1 mm/min. Compressive strength of GIC mixed with 0.5 wt% MWCNT-COOH increased significantly at 7 d. However, overall mechanical properties of GIC modified with MWCNT were not significantly increased with a delayed setting time, in comparison with control cement. Overall results indicated that the MWCNT/GIC composite cements showed a limited strengthening effect for dental glassionomer cement.

Design and Fabrication of Thrust Chamber for Injector verification of 7 tonf-class Thrust Chamber (7톤급 연소기용 분사기 검증을 위한 연소기 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.457-460
    • /
    • 2012
  • Design and fabrication of a sub-scale thrust chamber for verification of 7 tonf-class thrust chamber injectors were described in this paper. The 7 tonf-class thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene. The coaxial swirl injectors with different pressure drop and recess number were designed for 7 tonf full-scale thrust chamber. By applying the designed injectors to the sub-scale thrust chamber before applying them to the full-scale thrust chamber, the injector performance and functioning were verified. The sub-scale thrust chamber consists of 19 injectors, has chamber pressure of 70 bar, total propellant mass flow rate of 4.3 kg/s, mixture ratio(O/F) of 2.45.

  • PDF

The Variability of CDOM Along the Salinity Gradients of the Seomjin River Estuary During Dry and Wet Seasons (우기와 건기 중 섬진강 하구역에서 염분경사에 따른 유색용존유기물의 변동성)

  • Lee, Jae Hwan;Park, Mi Ok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.4
    • /
    • pp.362-371
    • /
    • 2016
  • The distribution patterns of Chromophoric Dissolved Organic Matter (CDOM) and the chemical characteristics of CDOM in the Seomjin river estuary were investigated in March, June and July 2012 in order to determine the spatial and temporal variability of CDOM along the salinity gradient considering the effects of mixing, nutrients and Chl a. The average CDOM values were $1.0{\pm}0.3m^{-1}$, $1.3{\pm}0.4m^{-1}$, and $1.4{\pm}0.3m^{-1}$ in March, June and July, respectively. A high concentration of CDOM (greater than $1.5m^{-1}$) was found at the head of the river which decreased towards the river mouth to as low as less than $0.5m^{-1}$. The average concentrations of CDOM increased from the dry season (March and June) to the wet season (July), and the average slope values ($S_{300-500}$), which were used as indicators of CDOM characteristics and sources, were in the range of $0.013-0.018m^{-1}$. The CDOM and $S_{300-50}$ values showed that not only the concentration of CDOM but also the chemical properties of DOM clearly changed between upstream and downstream in the Seomjin river. CDOM and FDOM showed a negative correlation with salinity ($R^2$ > 0.8), and CDOM was positively correlated with FDOM. Furthermore, the mixing pattern of CDOM was confirmed as conservative for all seasons. The main environmental factors influencing the concentration of CDOM was confirmed as conservative for all seasons. The main environmental factors influencing the concentration of CDOM were salinity (mixing) and water temperature, which meant the dilution of low CDOM seawater, was the controlling factor for the spatial distribution of CDOM. Increases in water temperature seemed to induce the production of CDOM during summer (June and July) through the biological degradation of DOM either by microbial activity or photo-degradation.

A Study on Fire Extinguishing Performance Evaluation of Compressed Air Foam System (압축공기포 소화설비의 소화성능 평가에 관한 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Kim, Sung-Soo;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.73-78
    • /
    • 2012
  • This research is to evaluate the fire extinguishing performance of Compressed Air Foam System and this test was conducted using Foam Head System. Compressed Air Foam System adopt the methods of causing the foam by mixing compressed air in foam-aqueous solution, In Overseas, CAFS (Compressed Air Foam System) is generally used because long distance discharge is possible and the water damage can be minimized by reducing the water usage. In this study, Comparative analysis on fire extinguishing effect is done through test to compare the performance between Foam System applied existing air mixture method and Compressed Air Foam System applied AFFF 3 %, foam-extinguishing-agent based on UL162 standard. In Compressed Air Foam System, the volume proportion of air mixture to foam-aqueous solution is 1 to 1 and discharging flow rate is 140 L/min, 160 L/min, 180 L/min, 200 L/min each. As a result of the test, in terms of fire extinguishing performance, fire suppression time for Compressed Air Foam Systems is shorter than for General Air Mixture System in all flow conditions.

Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition (모의 사용후핵연료 조성의 UO2 다공성펠렛 제조 스케일 업)

  • Jeon, Sang-Chae;Lee, Jae-Won;Yoon, Joo-Young;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.343-353
    • /
    • 2017
  • Processing and equipment were tailored for engineering scale fabrication of $UO_2$ porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, $UO_2$ powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at $1450^{\circ}C$ for 24 h in $4%\;H_2-Ar$, the average bulk density of the $UO_2$ Simfuel pellets was $6.89g{\cdot}cm^{-3}$, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel $UO_2$ porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of $UO_2$ porous pellets for engineering scale pyroprocessing research.

Preparation of Natural Seasoning using Enzymatic Hydrolysates from Byproducts of Alaska Pollock Theragra chalcogramma and Sea Tangle Laminaria japonica (명태(Theragra chalcogramma) 및 다시마(Laminaria japonica) 부산물 유래 효소 가수분해물을 이용한 천연 풍미 소재의 제조)

  • Kim, Jeong Gyun;Noh, Yuni;Park, Kwon Hyun;Lee, Ji Sun;Kim, Hyeon Jeong;Kim, Min Ji;Yoon, Moo Ho;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.545-552
    • /
    • 2012
  • This study developed a natural seasoning (NS) and characterized its food components. Hydrolysate from Alaska Pollock Theragra chalcogramma heads and sea tangle Laminaria japonica byproduct were obtained by incubating them with Neutrase for 4 h. NS was prepared by mixing sorbitol 2%, salt 2%, ginger powder 0.04%, garlic powder 0.2%, onion powder 0.2% and inosine monophosphate (IMP) 0.1% based on concentrated hydrolysates from Alaska pollock head and sea tangle byproduct before vaccum filtering. The proximate composition of NS was 82.7% moisture, 9.0% crude protein, and 5.1% ash. It had a higher crude protein content than commercial anchovy sauce (CS), it was lower in moisture and ash. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and angiotensin-I converting enzyme (ACE) inhibiting activity of NS were 90.1% and 88.9%, respectively, which were superior to those of CS. The free amino acid content and total taste value of NS were 1,626.0 mg/100 mL and 165.86, respectively, which were higher than those of CS. According to the results of taste value, the major free amino acids were glutamic acid and aspartic acid. In the sensory evaluation, the color and taste of NS were superior to those of CS. No difference in fish odor between NS and CS was found.

The Effect of Organic Manure on Dry Matter Yield, Feed Value and Stock Carrying Capacity of Sorghum${\times}$Sudangrass Hybrid in Arable Land (유기질 퇴비의 시용이 수수${\times}$수단그라스 교잡종의 생산성, 사료가치 및 가축사육능력에 미치는 영향)

  • Park, Sang-Soo;Noh, Jin-Hwan;Park, Jun-Hyuk;Yoon, Ki-Yong;Lee, Ju-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.59-70
    • /
    • 2012
  • This experiments was conducted to investigate the influence on the growth of Sorghum ${\times}$ Sudangrass hybrid by use of various organic fertilizer and investigated their productivity, feed value and stock carrying capacity. In the results, the application of fermented poultry manure showed 93.6ton/ha, 19.6ton/ha, 1.12ton/ha, 11.31ton/ha of fresh yield, dry matter yield, crude protein (CP) yield and total digestible nutrients (TDN) yield but there were no significant differences with the application of poultry by-product compost (poultry manure with sawdust) and swine by-product compost (swine manure with sawdust). And the average value of $K_{CP}$ and $K_{TDN}$ showed the highest one as 9.45head/ha/yr in the application of fermented poultry manure. However, organic matter content of fermented poultry manure to the lower portion of 32.1% compared to other organic fertilizers could imagine that mineralization of fermented poultry manure was fairly advanced and plant used most of nitrogen in fermented poultry manure, so productivity of Sorghum ${\times}$ Sudangrass hybrid was shown more than other organic fertilizers. If other organic fertilizers use continuous, this difference can be considered to be reduced further. As a result, fermented poultry manure is better than other organic fertilizers in productivity, feed value and stock carrying capacity due to the higher content of mineralizable matters. In addition, mixing poultry manure with cow and swine manure is better choice because cow and swine manure will meet a low organic matter in poultry manure.

Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler (친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가)

  • Jeon, Sun Jeong;Song, Si Nae;Kang, Shin Jae;Kim, Hee Taik
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.357-363
    • /
    • 2015
  • The development of the environment-friendly tire that meets the standard requirements according to tire labeling system can be improved through using highly homogeneous silica immobilized zinc oxide nanoparticles. In this study, a considerable amount of nanoporous silica was essentially added into nano zinc oxide to improve the physiochemical properties of the formed composite. The introduction of nanoporous silica materials in the composite facilitates the improvement of the wear-resistance and increases the elasticity of the tread. Therefore, the introduction of nanoporous silica can replace carbon black as filler in the formation of composites with desirable properties for conventional green tire. Herein, mesoporous silica immobilized zinc oxide nanoparticle with desirable properties for rubber compounds was investigated. Composites with homogeneous dispersion were obtained in the absence of dispersants. The dispersion stability was controlled through varying the molar ratio, ageing time and mixing order of the reactants. A superior dispersion was achieved in the sample obtained using 0.03 mol of zinc precursor as it had the smallest grain size (50.5 nm) and then immobilized in silica aged for 10 days. Moreover, the specific surface area of this sample was the highest ($649m^2/g$).