• 제목/요약/키워드: Mixing

검색결과 10,260건 처리시간 0.042초

인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구 (A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating)

  • 이호상;김동미
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.

혼사전력 변화에 의한 합성사의 혼련특성에 관한 연구 (The study on the mixing character of synthetic molding sand by power change)

  • 김영식;정종연;이종남
    • 한국주조공학회지
    • /
    • 제4권1호
    • /
    • pp.12-20
    • /
    • 1984
  • In order to investigate the effect of size of sand grains, bentonite content and moisture on mixing power, standard mixing power, permeability, green compressive strength and green mold hardness were measured with mixing time, and also coated layer of mixed sand with time was observed by optical microscope and scanning electron microscope. From this experiment, the results were summarized as follows. 1. Mixing power increased as size of sand grains decreased. 2. Mixing power increased gradually as bentonite content increased and in particular, increased rapidly in 7-10% bentonite. 3. Mixing power increased as moisture content decreased. 4. The mixing time required to get the optimum mixing power decreased as moisture content and grain size increased, but increased as bentonite content increased.

  • PDF

개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구 (Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer)

  • 김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF

카본블랙의 혼합메카니즘에 관한 연구 (Mixing Mechanism of Carbon Black)

  • 김진국
    • Elastomers and Composites
    • /
    • 제26권4호
    • /
    • pp.287-295
    • /
    • 1991
  • The mixing process with carbon black is important in the rubber industries. However, it is difficult to characterize the mixing mechanism of the carbon black. The mixing mechanism(distributive mixing and dispersive mixing) was discribed in this paper. The effect of fill factor on the mixing of the carbon black was studied. The dispersive mixing ability increases with increasing fill factor. However, the distributive mixing ability decreases with increasing fill factor. The effect of the carbon black content on the rheological property of the material was studied in this paper. The viscosity of the material increases with increasing the carbon black content. However, the elasticity of the matarial decreases with the carbon black content.

  • PDF

Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구 (Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers)

  • 송시홍;이상용
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.

에어믹서가 설치된 공조기 혼합실 내의 온도분포에 관한 실험적 연구 (An Experimental Study of Temperature Profiles in Mixing Zone of AHU with an Air Mixer)

  • 박권종;이석준;장영근
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.999-1006
    • /
    • 2006
  • A study of temperature profiles in mixing zone of AHU (air handling unit) can contribute greatly to enhance performance of AHU system, so the study on the temperature distribution between RA (return air) and OA (outdoor air) is important to analyze the mixing characteristics in a mixing zone of AHU. Accordingly, the temperature profiles during RA (return air) and OA (outdoor air) supply process into mixing zone of AHU with an air mixer are studied experimentally. The effect of air mixer, OA temperature and RA/OA flow rate are studied in detail. In this study, the results show that the mixing efficiency is all high for installed the air mixer. The more OA temperature increase and OA flow rate decrease, the more mixing efficiency is high.

산성폐광폐수를 이용한 매립지 침출수의 응집처리 (Coagulation Treatment of Landfill Leachate Using Acid Mine Drainage(AMD))

  • 최봉종;이승목;이상호
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.129-133
    • /
    • 2000
  • The objective of this study was to invetigate the coagulation effects of landfill leachate by using Acid Mine Drainage(AND). The coagulation efficiency was investigated by mixing landfill leachate with F $e^{+3}$ solution earned by oxidation of pyrite(AMD). In the results of this experiment, it was found that the amount of removed COD and SS was approximately 30% respectively by mixing at the ratio of AMD three to leachate one. And it showed highest turbidity removal efficiency at all mixing ratio. Concentration of Fe was decreased with increasing mixing ratio, however it was increased inversely at mixing ratio 4. Optimal mixing ratio was 3 at the results obtained by leachate coagulation experiments. Also removal efficiency at mixing ratio 3 corresponded to 500mg/$\ell$ of FeC $l_3$ dosage. it was suggested that pretreatment by mixing of AMD and leachate remove both suspended organic material of leachate and metal of AMD.

  • PDF

초음파를 이용한 마이크로 혼합기 제작 (Development of Micro Mixing Device with Using Ultrasonic Wave)

  • 전용호;최병주;강승준;김동권;김현정;이문구
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.459-464
    • /
    • 2013
  • The purpose of a micro-mixing device is to enhance the mixing by increasing the diffusion effect between different types of flows. There have been many attempts to actively or passively increase mixing. However, those studies were limited to lab-scale experiments because the production of devices requires a series of processes, time, cost, and the mixing quality itself. For this reason, this study attempted to develop a quick and simple process for micro-mixing device fabrication by using conventional machining and bonding processes and applying ultrasonic waves from the outside of the mixing device. The mixing quality was quantified by using the mixing index, and the results showed that the proposed system increases the mixing from ~33% to ~10% with respect to the flow rates.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향 (The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer)

  • 안상준;맹주성;김용대
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.