• Title/Summary/Keyword: Mixed-Modulation

Search Result 55, Processing Time 0.027 seconds

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.

The Effect of Short-Term Intensive Sensory Integration Therapy Program on a Child with Sensory Modulation Disorder(Mixed Pattern) : Case Study (혼합형 감각조절장애 아동에 대한 단기집중 감각통합치료 프로그램의 효과-사례보고)

  • Kim, Eun-Young;Ji, Seok-Yeon
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.4 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • Objective : This single-subject study explored the effect of short-term intensive sensory integration therapy program which was provided in a 2006 sensory integration treatment course on adaptive response of a four-year-girl with sensory modulation disorder(mixed pattern). Method : Based on results of the assessment to the child, her therapist offers an organized sensory integration program during four days. Results : Improvement of child's movement quality and variety in physical environment in therapy rooms and interaction with her therapist were observed. Conclusions : This report of the case will be helpful for occupational therapists who plan to intervent with a short-term intensive sensory integration therapy program. In addition, the need for consideration of consultation with the child's parents is discussed.

  • PDF

A Spread Spectrum Clock Generator for SATA II with Rounded Hershey-Kiss Modulation Profile

  • Moon, Yong-Hwan;Lim, Wan-Sik;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.129-133
    • /
    • 2011
  • A spread spectrum clock generation is an efficient way to reduce electro-magnetic interference (EMI) radiation in modern mixed signal chip systems. The proposed circuit generates the spread spectrum clock by directly injecting the modulation voltage into the voltage-controlled oscillator (VCO) current source for SATA II. The resulting 33KHz modulation profile has a Hersey-Kiss shape with a rounded peak. The chip has been fabricated using $0.18{\mu}m$ CMOS process and test results show that the proposed circuit achieves 0.509% (5090ppm) down spreading at 1.5GHz and peak power reduction of 10dB. The active chip area is 0.36mm ${\times}$ 0.49mm and the chip consumes 30mW power at 1.5GHz.

A Study on The Modulation Method for Low Power Communication in Underwater Sensor Network (수중 센서 네트워크에서 저전력 통신을 위한 변조기법의 적용성 연구)

  • Jang, Chul-Hee;Han, Jeong-Woo;Kim, Ki-Man;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.689-696
    • /
    • 2011
  • In this paper, we propose the result of PSSK(Phase Silence Shift Keying) modulation scheme that is mixed PSK(Phase Shift Keying) modulation and PPM(Pulse Position Modulation) method. The performance of underwater communication systems are influenced underwater channel characteristics. In particular, delay spread can make ISI(Inter Symbol Interference) because of reverberation and multi path. It degrade the performance of the communication system. Also underwater sensor networks consider about power efficient due to the particularities of their operating environment. PSSK modulation method transmit two orthogonal symbol and using silence period in a period so it can reduce the power. Increasing the distance of between modulation symbols, to enhance the performance of BER(Bit Error Rate) as well as to improve power efficient. The result of sea trial, QPSK modulation BER is $3.19{\times}10^{-1}$ and PSSK modulation BER is $2.89{\times}10^{-1}$.

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

Performance of Cooperative Networks with Differential Distributed Modulation using Mixed Signaling Scheme (혼합된 신호 방식을 적용한 차등 분산 변조 협력 네트워크의 성능)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1061-1068
    • /
    • 2019
  • Cooperative networks transmit signals form the source node to the destination node via several relay node where the combining and demodulation of relay aided signals provide the benefit of performance enhancement and data rate increment. In general, a repetitive manner transmission scheme in which the received signal from the source node is amplified/re-generated and forward to the destination node is widely used. In this paper, we analyzed the performance of cooperative networks using the mixed transmission scheme. The conventional modulation scheme is used in the source-relay links, and space-time code is applied in the relay-destination links. To reduce the complexity of the overall system, we adopt differential modulation which bypasses channel state information. We analyze bit error rate (BER) of the proposed system by considering the number of relay nodes, and the performances depending on the strength of transmission signal in the source-relays and rely-destination links are compared. In addition, we also discuss the system performance with the signal strength and the number of relay nodes simultaneously.

Design & Performance Analysis of Mixed OFDM-Modulation System for Efficient Image Transmission (효율적 영상전송을 위한 혼합된 OFDM 변복조 설계 및 시스템 성능분석)

  • Lee, So-Dong;Bae, Hyo-Won;Kong, Hyung-Yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.1041-1044
    • /
    • 2003
  • 현재의 이동통신에서는 다양한 영상 서비스를 제공해야 하는데, 이는 여러 종류의 고품질 데이터를 전송해야 함을 의미하며, 이를 위해 4 세대 광대역 이동통신을 위한 변조방식중의 하나로 OFDM(Orthogonal Frequency Division Multiplexing) 변조방식이 연구되고 있다. 본 논문에서는 OFDM의 각 직교 부반송파(Sub-carrier)들이 잠재적으로 다른 변조방식을 가질 수 있다는 특징에 single modulation(OFDM과 QPSK, OFDM과 16QAM), multi-modulation(OFDM과 (QPSK+16QAM))을 결합하여 시뮬레이션을 통해 성능을 비교하였고 실제 이미지를 전송하여 전송효과를 확인하였으며, 전송하고자 하는 데이터 종류와 채널환경에 따른 다중변복조 방식을 제안 분석하였다.

  • PDF

Comprehensive Analysis of Turbo TCM over Two Typical Channels

  • Bai, Zhiquan;Yuan, Dongfeng;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, system performance of turbo trellis coded modulation (turbo TCM) is presented and analyzed through computer simulations over two typical channels, namely additive white Gaussian noise (AWGN) and Rayleigh fading channels. We use and compare different mapping strategies based on Ungerboeck partitioning (UP), block partitioning (BP), mixed partitioning (MP), Gray partitioning (GP), and Ungerboeck-Gray partitioning (UGP) of the signal constellation of the turbo TCM system. Furthermore, taking 8PSK modulation of turbo TCM as an example, our simulation results show that turbo TCM with UP can obtain better performance than turbo TCM with BP, MP, GP, and UGP in both AWGN and Rayleigh fading channels.

Performance analysis in automatic modulation classification based on deep learning (딥러닝 기반 자동 변조 인식 성능 분석)

  • Kang, Jong-Jin;Kim, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.427-432
    • /
    • 2021
  • In this paper, we conduct performance analysis in automatic modulation classification of unknown communication signal to identify its modulation types based on deep neural network. The modulation classification performance was verified using time domain digital sample data of the modulated signal, frequency domain data to which FFT was applied, and time and frequency domain mixed data as neural network input data. For 11 types of analog and digitally modulated signals, the modulation classification performance was verified in various SNR environments ranging from -20 to 18 dB and reason for false classification was analyzed. In addition, by checking the learning speed according to the type of input data for neural network, proposed method is effective for constructing an practical automatic modulation recognition system that require a lot of time to learn.