• Title/Summary/Keyword: Mixed-Integer Programming Model

Search Result 230, Processing Time 0.028 seconds

Integrated Decision-making for Sequencing and Storage Location of Export Containers at a Receiving Operation in the Container Terminal with a Perpendicular Layout (수직 배치형 컨테이너 터미널 반입작업에서 수출 컨테이너의 작업순서와 장치위치 통합 의사결정)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.657-665
    • /
    • 2011
  • This study deals with an integrated problem for deciding sequencing and storage location of export containers together at its receiving operation in the container terminal with a perpendicular layout. The preferred storage location of an export container varies with the priority of the corresponding loading operation and the waiting time of an external truck depends on its storage time. This paper proposes the mixed integer programming model considering the expected arrival time and expected finish time of an external truck and the preferred storage location for its loading operation. And we suggest the heuristic algorithm based on a simulated annealing algorithm for real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost and the performance of the heuristic algorithm is analyzed through a numerical experiment.

Line Planning Optimization Model for Intercity Railway (지역간 철도의 노선계획 최적화 모형)

  • Oh, Dongkyu;Kho, Seung-Young;Kang, Seungmo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.80-89
    • /
    • 2013
  • The purpose of this research is to optimize the line planning of the intercity passenger railway. In this study, the line planning problem has been formulated into a mixed integer programming by minimizing both user costs (passenger's total travel time) and operator costs (operation, maintenance and vehicle costs) with multiple train types. As a solution algorithm, the branch-and-bound method is used to solve this problem. The change of travel demand, train speed and the number of schedules have been tested through sensitivity analysis. The optimal stop-schedules and frequency as well as system split with respect to each train type have been found in the case study of Kyoung-bu railway line in Korea. The model and results of this research are useful to make a decision for railway operation strategy, to analyze the efficiency of new railway systems and to evaluate the social costs of users and operators.

Optimization of Integrated District Heating System (IDHS) Based on the Forecasting Model for System Marginal Prices (SMP) (계통한계가격 예측모델에 근거한 통합 지역난방 시스템의 최적화)

  • Lee, Ki-Jun;Kim, Lae-Hyun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2012
  • In this paper we performed evaluation of the economics of a district heating system (DHS) consisting of energy suppliers and consumers, heat generation and storage facilities and power transmission lines in the capital region, as well as identification of optimal operating conditions. The optimization problem is formulated as a mixed integer linear programming (MILP) problem where the objective is to minimize the overall operating cost of DHS while satisfying heat demand during 1 week and operating limits on DHS facilities. This paper also propose a new forecasting model of the system marginal price (SMP) using past data on power supply and demand as well as past cost data. In the optimization, both the forecasted SMP and actual SMP are used and the results are analyzed. The salient feature of the proposed approach is that it exhibits excellent predicting performance to give improved energy efficiency in the integrated DHS.

A Ring-Mesh Topology Optimization in Designing the Optical Internet (생존성을 보장하는 링-그물 구조를 가진 광 인터넷 WDM 망 최적 설계)

  • 이영호;박보영;박노익;이순석;김영부;조기성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.455-463
    • /
    • 2004
  • In this paper, we deal with a ring-mesh network design problem arising from the deployment of WDM for the optical internet. The ring-mesh network consists of ring topology and full mesh topology for satisfying traffic demand while minimizing the cost of OAOMs and OXCs. The problem seeks to find an optimal clustering of traffic demands in the network such that the total number of node assignments is minimized, while satisfying ring capacity and node cardinality constraints. We formulate the problem as a mixed-integer programming model and prescribe a tabu search heuristic procedure Promising computational results within 3% optimality gap are obtained using the proposed method.

Optimal Hourly Scheduling of Community-Aggregated Electricity Consumption

  • Khodaei, Amin;Shahidehpour, Mohammad;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1251-1260
    • /
    • 2013
  • This paper presents the optimal scheduling of hourly consumption in a residential community (community, neighborhood, etc.) based on real-time electricity price. The residential community encompasses individual residential loads, communal (shared) loads, and local generation. Community-aggregated loads, which include residential and communal loads, are modeled as fixed, adjustable, shiftable, and storage loads. The objective of the optimal load scheduling problem is to minimize the community-aggregated electricity payment considering the convenience of individual residents and hourly community load characteristics. Limitations are included on the hourly utility load (defined as community-aggregated load minus the local generation) that is imported from the utility grid. Lagrangian relaxation (LR) is applied to decouple the utility constraint and provide tractable subproblems. The decomposed subproblems are formulated as mixed-integer programming (MIP) problems. The proposed model would be used by community master controllers to optimize the utility load schedule and minimize the community-aggregated electricity payment. Illustrative optimal load scheduling examples of a single resident as well as an aggregated community including 200 residents are presented to show the efficiency of the proposed method based on real-time electricity price.

Development of Integrated Water Quality Management Model for Rural Basins using Decision Support System. (의사결정지원기법을 이용한 농촌유역 통합 수질관리모형의 개발)

  • 양영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.103-113
    • /
    • 2000
  • A decision support system DSS-WQMRA (Decision Support System-Water Quality Management in Rural Area) was developed to help regional planners for the water quality management in a rural basin. The integrated model DSS-WQMRA, written in JAVA, includes four subsystems such as a GIS, a database, water quality simulation models and a decision model. In the system, the GIS deals with landuse and the location of pollutant sources. The database manages each data and supplies input data for various water quality simulation models. the water quality simulation model is composed of the GWLF( Generalized Watershed Loading Function), PCLM(Pollutant Loading Calculation Module) and the WASP5 model. The decision model based on mixed integer programming is designed to determine optimal costs and thus allow the selection of managemental practices to meet the water quality criteria. The methodology was tested with an example application in the Bokha River Basin, Kyunggi Province in Korea. It was proved that the integrated model DSS-WQMRA could be very useful for water quality management including the non-point source pollution in rural areas.

  • PDF

Combining Vehicle Routing with Forwarding : Extension of the Vehicle Routing Problem by Different Types of Sub-contraction

  • Kopfer, Herbert;Wang, Xin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The efficiency of transportation requests fulfillment can be increased through extending the problem of vehicle routing and scheduling by the possibility of subcontracting a part of the requests to external carriers. This problem extension transforms the usual vehicle routing and scheduling problems to the more general integrated operational transportation problems. In this contribution, we analyze the motivation, the chances, the realization, and the challenges of the integrated operational planning and report on experiments for extending the plain Vehicle Routing Problem to a corresponding problem combining vehicle routing and request forwarding by means of different sub-contraction types. The extended problem is formalized as a mixed integer linear programming model and solved by a commercial mathematical programming solver. The computational results show tremendous costs savings even for small problem instances by allowing subcontracting. Additionally, the performed experiments for the operational transportation planning are used for an analysis of the decision on the optimal fleet size for own vehicles and regularly hired vehicles.

An Efficient Mixed-Integer Programming Model for Berth Allocation in Bulk Port (벌크항만의 하역 최적화를 위한 정수계획모형)

  • Tae-Sun, Yu;Yushin, Lee;Hyeongon, Park;Do-Hee, Kim;Hye-Rim, Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.105-114
    • /
    • 2022
  • We examine berth allocation problems in tidal bulk ports with an objective of minimizing the demurrage and dispatch associated berthing cost. In the proposed optimization model inventory (or stock) level constraints are considered so as to satisfy the service level requirements in bulk terminals. It is shown that the mathematical programming formulation of this research provides improved schedule resolution and solution accuracy. We also show that the conventional big-M method of standard resource allocation models can be exempted in tidal bulk ports, and thus the computational efficiency can be significantly improved.

An Optimization Model for Minimizing Transfer Time (도시철도 환승시간 최소화를 위한 최적화 모형)

  • Sohn, Moo-Sung;Kim, Kwang-Tae;Kim, Se-Won;Oh, Suk-Mun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1722-1729
    • /
    • 2011
  • This paper presents an optimization model for revising train timetable based on an existing timetable to improve transfer time at each station. The transfer time consists of walking and waiting time. The model is formulated as a mixed integer programming. The objective function is to minimize the transfer time from one train to another train at each station. To reflect real situations, range of revising departure time is considered as major condition in the model. To validate the effectiveness of the model, rudimentary computational results are included, and the results are analyzed in terms of transfer time.

  • PDF

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF