Browse > Article
http://dx.doi.org/10.9723/jksiis.2022.27.6.105

An Efficient Mixed-Integer Programming Model for Berth Allocation in Bulk Port  

Tae-Sun, Yu (부경대학교 시스템경영.안전공학부 산업경영공학전공)
Yushin, Lee (부경대학교 시스템경영.안전공학부 산업경영공학전공)
Hyeongon, Park (부경대학교 시스템경영.안전공학부 안전공학전공)
Do-Hee, Kim (부산대학교 산업공학과)
Hye-Rim, Bae (부산대학교 산업공학과)
Publication Information
Journal of Korea Society of Industrial Information Systems / v.27, no.6, 2022 , pp. 105-114 More about this Journal
Abstract
We examine berth allocation problems in tidal bulk ports with an objective of minimizing the demurrage and dispatch associated berthing cost. In the proposed optimization model inventory (or stock) level constraints are considered so as to satisfy the service level requirements in bulk terminals. It is shown that the mathematical programming formulation of this research provides improved schedule resolution and solution accuracy. We also show that the conventional big-M method of standard resource allocation models can be exempted in tidal bulk ports, and thus the computational efficiency can be significantly improved.
Keywords
Bulk Port; Berth Allocation; Inventory Constraint; Tidal Constraints; Mathematical Programming;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transportation Research Part B: Methodological, 37(6), 541-560.   DOI
2 Ku, W. Y., & Beck, J. C. (2016). Mixed Integer Programming Models for Job Shop Scheduling: A Computational Analysis. Computers & Operations Research, 73, 165-173.   DOI
3 Liu, C., Xiang, X., & Zheng, L. (2017). Two decision models for berth allocation problem under uncertainty considering service level. Flexible Services and Manufacturing Journal, 29(3), 312-344.   DOI
4 Mauri, G. R., Ribeiro, G. M., Lorena, L. A. N., & Laporte, G. (2016). An adaptive large neighborhood search for the discrete and continuous berth allocation problem. Computers & Operations Research, 70, 140-154.   DOI
5 Rha, J. S. (2022). Analysis of Factors Affecting Surge in Container Shipping Rates in the Era of Covid19 Using Text Analysis. Journal of the Korea Industrial Information Systems Research, 27(1), 111-123.   DOI
6 Ribeiro, G. M., Mauri, G. R., de Castro Beluco, S., Lorena, L. A. N., & Laporte, G. (2016). Berth allocation in an ore terminal with demurrage, despatch and maintenance. Computers & Industrial Engineering, 96, 8-15.   DOI
7 Robenek, T., Umang, N., Bierlaire, M., & Ropke, S. (2014). A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports. European Journal of Operational Research, 235(2), 399-411.
8 Umang, N., Bierlaire, M., & Vacca, I. (2013). Exact and heuristic methods to solve the berth allocation problem in bulk ports. Transportation Research Part E: Logistics and Transportation Review, 54, 14-31.   DOI
9 Barros, V. H., Costa, T. S., Oliveira, A. C., & Lorena, L. A. (2011). Model and Heuristic for Berth Allocation in Tidal Bulk Ports with Stock Level Constraints. Computers & Industrial Engineering, 60(4), 606-613.   DOI
10 Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627.   DOI
11 Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., & Lusby, R. (2011). Models for the discrete berth allocation problem: A computational comparison. Transportation Research P art E: Logistics and Transportation Review, 47(4), 461-473.   DOI
12 Cheimanoff, N., Fontane, F., Kitri, M. N., & Tchernev, N. (2022). Exact and Heuristic Methods for the Berth Allocation Problem with Multiple Continuous Quays in Tidal Bulk Terminals. Expert Systems with Applications, 201, 117141.   DOI
13 Cho, J.-H., Kim, H.-S., Choi, H.-R., Park, N.-K. & Kang, M.-H. (2006). An Optimal Intermodal-Transport Algorithm using Dynamic Programming. Journal of the Korea Industrial Information Systems Research, 11(3), 20-33.
14 Choi, H.-R., Park, N.-K., Kwon, H.-K. & Yoo, D.-Y. (2005). Analysis on the Supply Chain of Port & Logistics Industry from the Viewpoint of its Relationship. Journal of the Korea Industrial Information Systems Research, 10(3), 38-47.
15 Cheimanoff, N., Fontane, F., Kitri, M. N., & Tchernev, N. (2021). A Reduced VNS Based Approach for the Dynamic Continuous Berth Allocation Problem in Bulk Terminals with Tidal Constraints. Expert Systems with Applications, 168, 114215.   DOI
16 Cordeau, J. F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search heuristics for the berth-allocation problem. Transportation science, 39(4), 526-538.   DOI
17 De Leon, A. D., Lalla-Ruiz, E., Melian-Batista, B., & Moreno-Vega, J. M. (2017). A Machine Learning-based System for Berth Scheduling at Bulk Terminals. Expert Systems with Applications, 87, 170-182.   DOI
18 Ernst, A. T., Oguz, C., Singh, G., & Taherkhani, G. (2017). Mathematical Models for the Berth Allocation Problem in Dry Bulk Terminals. Journal of Scheduling, 20(5), 459-473.   DOI