• Title/Summary/Keyword: Mixed waste acid

Search Result 78, Processing Time 0.022 seconds

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

Synthesis of Biodiesel from Soybean Oil over MoO3-SnO2-CeO2 Catalysts (MoO3-SnO2-CeO2 촉매에 의한 대두유로부터 바이오디젤의 합성)

  • Jung, Won Young;Lee, Man Sig;Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.723-728
    • /
    • 2012
  • The production of biodiesel by transesterification of soybean oil was performed on $MoO_3$, $SnO_2$ and $CeO_2$ mixed oxides. The catalysts were characterized using XRD and $NH_3$-TPD. $MoO_3$ showed the highest activity among the three metal oxides. When 7 wt% of catalysts was introduced into the reactants, the highest activity was obtained and the water added to reactant decreased the catalytic activity. $MoO_3$ and $SnO_2$ mixed with 50:50 showed the highest activity and $CeO_2$ added with 20% on the $MoO_3-SnO_2$ mixed oxide also showed the highest activity. The catalytic activity showed to have a good relationship with the amount of acid site of catalysts. When the waste soybean oil was used as a reactant, the conversion was decreased about 30%.

Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends (이산화탄소 저감형 고분자 블렌드의 상 분리 특성연구)

  • Cho, Yong-Kwang;Kim, Yeong-Woo;Lee, Hak Yong;Park, Sang-Bo;Park, Chan-Young;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.

Recovery of Silver from the Spent Solution Generated from Electrochemical Oxidation of Radioactive Wastes (放射性 폐기물의 전기화학적 분해 폐액으로부터 銀의 回收)

  • 문제권;정종훈;오원진;이일희
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.22-28
    • /
    • 2001
  • Recovery of silver in the spent solution generated from MEO(Mediated Electrochemical Oxidation) process, which is a process to decompose radioactive organic mixed wastes at low temperature, was performed using chemical method. Silver nitrate in 5M nitric acid solution could be completely recovered as AgCl by using 1% excess of the stoichiometric HCl equivalents. Then, AgCl was transformed to Ag metal by reduction reaction with hydrogen peroxide under alkaline media. The optimum pH for the reduction to silver metal was found to be in the range of 12.8∼13.0.

  • PDF

A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil (발전용 바이오중유의 혼합비율에 따른 배출가스 특성 연구)

  • HA, JONG-HAN;JEON, CHEOL-HWAN;KWON, YONG-CHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.484-492
    • /
    • 2015
  • As our government is actively introducing the RPS (Renewable Portfolio Standards) as a national renewable energy obligation policy, power producers are using the various renewable energy to meet the RPS supply quota since 2012. Recently, it is appling to use power bio-fuel oil in bio-fuel oil demonstration project with power companies. In general, power bio-fuel oils are composed of mixture products of vegetable oil, animal fat, fatty acid ester and waste oil. It is already developing for a power plant as a renewable energy abroad. In Korea, it is studying a 100% combustion and blended combustion of heavy fuel oil and bio-fuel oil. In this study, we investigated fuel characteristics of mixed power bio-fuel oil and its emission performance. Especially, it was reduced emissions of bio-oil in industrial boilers due to bio-fuel properties as compare with fuel oil.

Simultaneous Preconcentration and Determination of Trace Elements in Water Samples by Coprecipitation-Flotation with Lanthanum Hydroxide $[La(OH)_3]$

  • 김영상;김기찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.582-588
    • /
    • 1995
  • The preconcentration and determination of trace Cd(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), Mn(Ⅱ) and Zn(Ⅱ) in water samples were studied by the precipitate flotation using La(OH)3 as a coprecipitant. The analytes were quantitatively coprecipitated by adding 3.0 mL of 0.1 M La(Ⅲ) solution in a 1,000 mL water sample and adjusting the pH to 9.5 with NaOH solution. After the addition of the 1:8 mixed surfactant solution of each 0.1% sodium oleate and sodium lauryl sulfate, the solution was stirred with a magnetic stirrer for 10 minutes. The precipitates were floated to the surface by bubbling with nitrogen gas and collected in a small sampling bottle. The precipitates were dissolved in nitric acid and then the solutions were diluted to 25.00 mL with a deionized water. The analytes were determined by flame atomic absorption spectrometry. This procedure was applied to the waste water analysis. This technique was simple, convenient and especially rapid for the analysis of a large volume of sample. And also, from the recoveries of better than 92% which were obtained from real samples, this method could be judged to be applicable to the preconcentration and quantitative determination of trace elements in water samples.

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test

  • Oh, Seung Min;Oh, Se Jin;Kim, Sung Chul;Lee, Sang Hwan;Ok, Yong Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • Acid mine drainage sludge (AMDS) has been classified as mine waste and generally deposited in land. For this reason, studies have been conducted to examine the possibility of recycling AMDS as an amendment for heavy metal stabilization in soil. The main objective of this study was to evaluate heavy metal stabilization efficiency of AMDS comparing with the widely used lime stone. Also, optimum mixing ratio was evaluated for enhancing heavy metal stabilization. AMDS and limestone were mixed at the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 with five different heavy metal solutions ($100mg\;L^{-1}$ of $NaAsO_2$, $CdCl_2$, $CuCl_2$, $Pb(NO_3)_2$, and $ZnSO_4{\cdot}7H_2O$). The amendments were added at a rate of 3% (w/v). In order to determine the stabilization kinetics, samples were collected at different reaction time of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 minutes. The heavy metal stabilization by AMDS was faster and higher than those of limestone for all examined heavy metals. While limestone showed only 20% of arsenic (As) stabilization after 1,024 minutes, 96% of As was stabilized within 1 minute by AMDS. The highest effect on the stabilization of heavy metal (loid) was observed, when the two amendments were mixed at a ratio of 1:1. These results indicated that AMDS can be effectively used for heavy metal stabilization in soil, especially for As, and the optimum mixing ratio of AMDS and lime was 1:1 at a rate of 3% (w/v).

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF