• Title/Summary/Keyword: Mixed noise

Search Result 341, Processing Time 0.027 seconds

Robust Object Detection from Indoor Environmental Factors (다양한 실내 환경변수로부터 강인한 객체 검출)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, we propose a detection method of reduced computational complexity aimed at separating the moving objects from the background in a generic video sequence. In generally, indoor environments, it is difficult to accurately detect the object because environmental factors, such as lighting changes, shadows, reflections on the floor. First, the background image to detect an object is created. If an object exists in video, on a previously created background images for similarity comparison between the current input image and to detect objects through several operations to generate a mixture image. Mixed-use video and video inputs to detect objects. To complement the objects detected through the labeling process to remove noise components and then apply the technique of morphology complements the object area. Environment variable such as, lighting changes and shadows, to the strength of the object is detected. In this paper, we proposed that environmental factors, such as lighting changes, shadows, reflections on the floor, including the system uses mixture images. Therefore, the existing system more effectively than the object region is detected.

Text extraction from camera based document image (카메라 기반 문서영상에서의 문자 추출)

  • 박희주;김진호
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.2
    • /
    • pp.14-20
    • /
    • 2003
  • This paper presents a text extraction method of camera based document image. It is more difficult to recognize camera based document image in comparison with scanner based image because of segmentation problem due to variable lighting condition and versatile fonts. Both document binarization and character extraction are important processes to recognize camera based document image. After converting color image into grey level image, gray level normalization is used to extract character region independent of lighting condition and background image. Local adaptive binarization method is then used to extract character from the background after the removal of noise. In this character extraction step, the information of the horizontal and vertical projection and the connected components is used to extract character line, word region and character region. To evaluate the proposed method, we have experimented with documents mixed Hangul, English, symbols and digits of the ETRI database. An encouraging binarization and character extraction results have been obtained.

  • PDF

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Traffic Sign Recognition by the Variant-Compensation and Circular Tracing (변형 보정과 원형 추적법에 의한 교통 표지판 인식)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • We propose the new method for the traffic signs recognition that is one of the DAS(Driving assistance system) in the intelligent vehicle. Our approach estimates a varied degree by using a geometric method from the varied traffic signs in noise, rotation and size, and extracts the recognition symbol from the compensated traffic sign for a recognition by using the sequential color-based clustering. This proposed clustering method classify the traffic sign into the attention, regulation, indication, and auxiliary class. Also, The circular tracing method is used for the final traffic sign recognition. To evaluate the effectiveness of the proposed method, varied traffic signs were built. As a result, The proposed method show that the 95 % recognition rate for a single variation, and 93 % recognition rate for a mixed variation.

  • PDF

Impacts of Automated Vehicle Platoons on Car-following Behavior of Manually-Driven Vehicles (군집주행 환경이 비자율차량의 차량 추종에 미치는 영향분석)

  • Suh, Sanghyuk;Lee, Seolyoung;Oh, Cheol;Choi, Saerona
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.107-121
    • /
    • 2017
  • This study conducted a 3-stage survey and simulation experiment to identify the impact of vehicle platoons on car-following behavior of manually-driven vehicles. Vehicle maneuvering data obtained from driving simulations was statistically analyzed based on three measures including average speed, acceleration noise, and offset to represent the deviation of lateral movements. Results indicate that MV drivers tended to have psychological burden while driving in automated vehicle platooning environments, which resulted in different vehicle maneuvers. It is expected that the outcome of this study would be useful fundamentals in developing various traffic operations strategies for managing mixed traffic stream consisting of MVs and autonomous vehicles.

A Study on the Hangul Recognition Using Hough Transform and Subgraph Pattern (Hough Transform과 부분 그래프 패턴을 이용한 한글 인식에 관한 연구)

  • 구하성;박길철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.185-196
    • /
    • 1999
  • In this dissertation, a new off-line recognition system is proposed using a subgraph pattern, neural network. After thinning is applied to input characters, balance having a noise elimination function on location is performed. Then as the first step for recognition procedure, circular elements are extracted and recognized. From the subblock HT, space feature points such as endpoint, flex point, bridge point are extracted and a subgraph pattern is formed observing the relations among them. A region where vowel can exist is allocated and a candidate point of the vowel is extracted. Then, using the subgraph pattern dictionary, a vowel is recognized. A same method is applied to extract horizontal vowels and the vowel is recognized through a simple structural analysis. For verification of recognition subgraph in this paper, experiments are done with the most frequently used Myngjo font, Gothic font for printed characters and handwritten characters. In case of Gothic font, character recognition rate was 98.9%. For Myngjo font characters, the recognition rate was 98.2%. For handwritten characters, the recognition rate was 92.5%. The total recognition rate was 94.8% with mixed handwriting and printing characters for multi-font recognition.

  • PDF

An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values (조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법)

  • Na, Min-Young;Kim, Hyun-Jung;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.607-613
    • /
    • 2011
  • In this paper, we propose a hand image segmentation method using the dynamic threshold values on input images with various lighting and background attributes. First, a moving hand silhouette is extracted using the camera input difference images, Next, based on the R,G,B histogram analysis of the extracted hand silhouette area, the threshold interval for each R, G, and B is calculated on run-time. Finally, the hand area is segmented using the thresholding and then a morphology operation, a connected component analysis and a flood-fill operation are performed for the noise removal. Experimental results on various input images showed that our hand segmentation method provides high level of accuracy and relatively fast stable results without the need of the fixed threshold values. Proposed methods can be used in the user interface of mixed reality applications.

Numerical Modeling for the Identification of Fouling Layer in Track Ballast Ground (자갈도상 지반에서의 파울링층 식별을 위한 수치해석연구)

  • Go, Gyu-Hyun;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.13-24
    • /
    • 2021
  • Recently, attempts have been made to detect fouling patterns in the ground using Ground Penetrating Radar (GPR) during the maintenance of gravel ballast railway tracks. However, dealing with GPR signal data obtained with a large amount of noise in a site where complex ground conditions are mixed, often depends on the experience of experts, and there are many difficulties in precise analysis. Therefore, in this study, a numerical modeling technique that can quantitatively simulate the GPR signal characteristics according to the degree of fouling of the gravel ballast material was proposed using python-based open-source code gprMax and RSA (Random sequential Absorption) algorithm. To confirm the accuracy of the simulation model, model tests were manufactured and the results were compared to each other. In addition, the identification of the fouling layer in the model test and analysis by various test conditions was evaluated and the results were analyzed.

Performance analysis in automatic modulation classification based on deep learning (딥러닝 기반 자동 변조 인식 성능 분석)

  • Kang, Jong-Jin;Kim, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.427-432
    • /
    • 2021
  • In this paper, we conduct performance analysis in automatic modulation classification of unknown communication signal to identify its modulation types based on deep neural network. The modulation classification performance was verified using time domain digital sample data of the modulated signal, frequency domain data to which FFT was applied, and time and frequency domain mixed data as neural network input data. For 11 types of analog and digitally modulated signals, the modulation classification performance was verified in various SNR environments ranging from -20 to 18 dB and reason for false classification was analyzed. In addition, by checking the learning speed according to the type of input data for neural network, proposed method is effective for constructing an practical automatic modulation recognition system that require a lot of time to learn.

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.