• 제목/요약/키워드: Mixed integer optimization

검색결과 155건 처리시간 0.025초

해양 석유 생산 및 수송 최적화 문제에 관한 연구 (A Study on the Optimization Problem for Offshore Oil Production and Transportation)

  • 김창수;김시화
    • 한국항해항만학회지
    • /
    • 제39권4호
    • /
    • pp.353-360
    • /
    • 2015
  • 해양 석유 생산은 '해양'이라는 특성에 기인하는 여러 가지 변수를 동반하면서 막대한 비용과 시간을 필요로 한다. 모든 관련된 프로세스는 인명, 환경 그리고 재산의 손실을 줄이기 위한 치밀한 일련의 계획에 의하여 통제된다. 이 논문은 해양 석유 생산 및 수송의 최적화 문제를 다룬다. 문제 영역의 범위를 정의하기 위해 해양 석유 생산 및 수송 네트워크를 제시하고 그 문제를 해결하기 위한 혼합정수계획모형을 구축하였다. 제안된 최적화 모형의 타당성을 확인하기 위해 가상의 해양 유전과 수요 시장을 바탕으로 MS Office Excel의 해찾기를 이용하여 계산실험들을 수행하였다. 해양 석유 생산 및 수송 네트워크 하위 흐름은 해양 유전에서 생산된 원유를 수요 시장으로 배분하는 해사수송문제가 된다. 이 해사수송문제를 해결하기 위해 집합 패킹 모형을 이용하여 구축된 MoDiSS(Model-based DSS in Ship Scheduling)를 사용하였다. 이러한 연구결과들은 실제적인 해양 석유 생산 및 수송 최적화 문제에 의미 있게 적용될 수 있으리라 사료된다.

스마트 네트워크 환경에서의 자원 및 경로 최적화 연구 (Resource and Network Routing Optimization in Smart Nodes Environment)

  • 서동원;윤승현;장병윤
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.149-156
    • /
    • 2013
  • 본 연구에서는 네트워크 총 비용 최소화의 관점에서 스마트 노드 자원사용과 네트워크 트래픽 경로를 함께 결정하는 최적화 문제를 고려하였다. 이를 위해, 스마트 노드의 기술 추세와 자원 최적화에 대한 분석방법, 스마트 네트워크의 경제적 효과와 CDN에 대해 살펴보았다. CDN에 대한 분석을 기반으로 혼합정수계획법 모형을 제안하였으며, 이는 기존에 알려진 복제위치선정과 고객요청 분배문제 (RPRDP)와 경로 결정문제가 결합된 형태로 볼 수 있다. 제안된 혼합정수계획법 모형을 구현하고 그 결과를 소개함으로써 제안된 모형의 유효성을 밝혔다.

최적화에 기반을 둔 LAD의 패턴 생성 기법 (Optimization-Based Pattern Generation for LAD)

  • 장인용;류홍서
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.11-18
    • /
    • 2006
  • LAD(Logical Analysis of Data)는 Boolean-logic에 기반을 둔 데이터 마이닝 방법론이다. LAD에 의한 데이터 분석 시 중요한 과정은 데이터 집합에 숨겨진 구조적 정보를 패턴의 형식으로 발견해내는 패턴 생성 단계이다. 기존의 패턴 생성 방법은 열거법에 기반을 두고 있어 높은 차수의 패턴을 생성하는 것은 실질적으로 불가능하였다. 본 논문에서는 최적화에 기반을 둔 패턴 생성 방법론을 제안하고 혼합 정수 선형 모형과 SCP(Set Covering Problem)의 두 가지 모형을 제안한다. 기계학습 분야에서 널리 쓰이는 데이터 집합에 대해 제안된 패턴 생성 방법을 이용한 분석 실험을 통하여 기존의 패턴 생성 방법으로는 생성될 수 없는 패턴을 쉽게 생성하는 효율성을 입증하였다.

  • PDF

직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법 (A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System)

  • 김기태;전건욱
    • 산업경영시스템학회지
    • /
    • 제33권2호
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks

  • Xie, Zhigang;Song, Xin;Cao, Jing;Xu, Siyang
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.746-758
    • /
    • 2022
  • This paper focuses on a mobile edge-computing-enabled heterogeneous network. A battery level-aware task-scheduling framework is proposed to improve the energy efficiency and prolong the operating hours of battery-powered mobile devices. The formulated optimization problem is a typical mixed-integer nonlinear programming problem. To solve this nondeterministic polynomial (NP)-hard problem, a decomposition-based task-scheduling algorithm is proposed. Using an alternating optimization technology, the original problem is divided into three subproblems. In the outer loop, task offloading decisions are yielded using a pruning search algorithm for the task offloading subproblem. In the inner loop, closed-form solutions for computational resource allocation subproblems are derived using the Lagrangian multiplier method. Then, it is proven that the transmitted power-allocation subproblem is a unimodal problem; this subproblem is solved using a gradient-based bisection search algorithm. The simulation results demonstrate that the proposed framework achieves better energy efficiency than other frameworks. Additionally, the impact of the battery level-aware scheme on the operating hours of battery-powered mobile devices is also investigated.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

Joint resource optimization for nonorthogonal multiple access-enhanced scalable video coding multicast in unmanned aerial vehicle-assisted radio-access networks

  • Ziyuan Tong;Hang Shen;Ning Shi;Tianjing Wang;Guangwei Bai
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.874-886
    • /
    • 2023
  • A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment-association, spectrum-partition, and UAV transmit-power-control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate videoreception rate, and spectrum utilization over various baselines.

제한용량이 있는 설비입지결정 문제에 대한 적응형 평균치교차분할 알고리즘 (Adaptive Mean Value Cross Decomposition Algorithms for Capacitated Facility Location Problems)

  • 김철연;최경현
    • 대한산업공학회지
    • /
    • 제37권2호
    • /
    • pp.124-131
    • /
    • 2011
  • In this research report, we propose a heuristic algorithm with some primal recovery strategies for capacitated facility location problems (CFLP), which is a well-known combinatorial optimization problem with applications in distribution, transportation and production planning. Many algorithms employ the branch-and-bound technique in order to solve the CFLP. There are also some different approaches which can recover primal solutions while exploiting the primal and dual structure simultaneously. One of them is a MVCD (Mean Value Cross Decomposition) ensuring convergence without solving a master problem. The MVCD was designed to handle LP-problems, but it was applied in mixed integer problems. However the MVCD has been applied to only uncapacitated facility location problems (UFLP), because it was very difficult to obtain "Integrality" property of Lagrangian dual subproblems sustaining the feasibility to primal problems. We present some heuristic strategies to recover primal feasible integer solutions, handling the accumulated primal solutions of the dual subproblem, which are used as input to the primal subproblem in the mean value cross decomposition technique, without requiring solutions to a master problem. Computational results for a set of various problem instances are reported.