• Title/Summary/Keyword: Mixed industrial waste

Search Result 110, Processing Time 0.022 seconds

Physicochemical Treatment of Waste Water Containing Organic Materials (유기물을 함유한 폐수의 물리화학적 처리에 관한 연구)

  • Lee, Han-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.493-498
    • /
    • 2013
  • The production of synthetic polymer compounds and ethanolamine (ETA, a pH control agent used in nuclear power plants) generates effluent that pollutes water. This study focused on the development of chemicals for the treatment of effluent and processes to reduce the COD level due to the presence of organic materials via physicochemical treatment. It was found that a mixed coagulant of $FeCl_2$ and $MgCl_2$ (1:1) was the most effective in treating effluent and reducing the COD level. When the mixed coagulant was injected into effluent including organic materials, the COD level was reduced by more than 80%.

The pilot study on reclamation of incineration ashes of municipal waste in the demonstrative factory

  • Chang Hui-Lan;Liaw Chin-Tson;Leu Ching-Huoh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.573-580
    • /
    • 2003
  • In Taiwan there are 21 Municipal Solid Waste Incinerators (MSWI) built to treat 80% of the MSW nationwide. Approximately 2,000 tons of incineration ashes of municipal waste contain reaction ash and fly ash (3:1 by weight)will be produced daily, and this may cause a serious waste problem. According to EPA regulations, reaction ash and fly ash produced after incineration should be properly treated. Landfill capacity barely meets the general demands. More efficient actions should be planned and taken. The study found 'reclamation' should be the optimal solution to this problem. Only limited research and previous successful experiences are available among other countries. An incinerator in Northern Taiwan is chosen for this study to make environmental bricks from the reaction ash and fly ash. From the previous tests, the results of strength test were measured. From the previous test results, the fly ash products have not reached the desired strength; hence, reaction ash is chosen for further pilot study. In the experiment, incineration ashes, cement and gravel are mixed in the ratio of 1:1:1(by weight), to ground concretization aggregate and pelletization aggregate, the concrete products made from the aggregates were of the strength of 108 $kgf/cm^2$ and 142 $kgf/cm^2$ individually. For the purpose of making nonstructural walls which met the State Building Standards. In the study, 50 tons of concrete products was yielded from aggregate and environmental bricks. Further observation and supervision are recommended to ascertain the resource recycling and reclamation. EPA has planned to build three 'Recycling Plants' in northern, middle and southern Taiwan to develop efficient techniques to produce concrete products, sub-base course, soundproofing wall, gravel, artificial fishing reefs, tiles, drainage, bricks and etc. This experiment of the demonstrative plant solves the problem of the incineration ashes and opens another opportunity to reclaim them.

  • PDF

Fire Retardancy and Mechanical Properties of Paper Sludge-Wood Particle Mixed Board (제지 슬러지-목재 파티클 혼합보드의 내화성과 기계적 성질)

  • Son, Jung-Il;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.54-65
    • /
    • 1994
  • This research carried out to investigate the effects of inorganic materials in paper sludge on the thermal degradation and of paper sludge addition on physical and mechanical properties of paper sludge-wood particle mixed boards in comparison with unmodified particleboards. Also these unmodified particleboards and paper sludge-wood particle mixed boards were soaked in aqueous solutions of fire-retardant chemicals(diammonium phosphate and zinc chloride), and their fire retardancy were tested by oxygen index method and ISO ignition test to determine the feasibility of paper sludge, industrial waste, as a recyclable resource in fabrication of fire-resisting panels for building material. Since the redrying of fire-retardant treated particleboards and paper sludge-wood particle mixed boards were made by press drying method, this process was a simple and effective method. On the other hand, flexural bending strength and internal bonding strength were also analysed to evaluate mechanical properties through standard method.

  • PDF

Injection moldable material utilizing shell waste and recycled polyethylene (貝角 廢棄物과 混合 廢플라스틱을 이용한 射出用 素材에 대한 硏究)

  • Chong, Mie-Hwa;Chung, Yong-Chan;Chun, Byoung-Chul;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2005
  • Mechanical properties of shell powder containing mixed recycled plastics were investigated depending on the shell content and surface modification. First, shell powder and LDPE were compounded using the twin screw extruder to manufacture 40 wt% master batch(M/B), and the M/B was blended with LDPE to produce bulk specimens with 10, 20, 30 and 40 wt% shell content. To improve the compatibility of shell powder with mixed recycled plastics matrix, surface of shell powder was chemically modified with cations or cationic surfactant. Surface modified shell was also used to prepare bulk specimens with the same shell content. Mechanical property analysis showed obvious improvement for the surface modified shell containing bulk specimens compared to unmodified ones. These results can lead to the development of new applications for the mixed recycled plastics.

The Dynamic Properties of the Artificial Stone According to the Mixed Ratio Change of the Inorganic Composite and Waste Porcelain (폐자기와 3성분계 무기결합재의 혼합비율 변화에 따른 인조석재의 역학적 특성)

  • Yoo, Yong Jin;Bae, Sang Woo;Lee, Sang Soo;Song, Ha Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.95-96
    • /
    • 2012
  • This study makes with the environment-friendly artificial stone which doesn't use the cement and natural aggregate and increases the blast furnace slag that is the eco-friendly material that is the industrial byproduct, fly ash, and availability of the red mud and applies the coares aggregate substitute material as the cleistothecium. The experimental plan according to it indicated the compressive strength and flexural strength which is the most excellent in the mixied ratio 40% of the result degree of closeness magnetism of experimenting with the optimal mix obtained through the preceding stude.

  • PDF

A Research of the Efficient Financial Management of Welfare for Education through Operating Mixed-use of School Facilities (학교시설 복합화 운영개선을 통한 교육복지재정 운용 효율화 방안)

  • Kim, Joo-Cheul
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.2
    • /
    • pp.46-60
    • /
    • 2011
  • Nowadays, the change of the social structure such as the elderly society and the broken traditional family conception is progressing rapidly. The social change produced a lot of problems, and the welfare from among these is the urgent problem. The welfare for the aged is very important problem in an aging society. The changes of industrial and economic structures also caused the increase of double-income families. The numbers of schoolchildren decreased rapidly because of the low birth and elderly society. So, many idle spaces of existing school facilities have emerged, and these left spaces is being blamed for the fiscal waste. If these idle spaces were used for the welfare-facilities, it will be of assistant to solve the problem about welfare and use the school facilities effectively. And then, the big profit from these enterprises can be used for the better welfare for education.

Effects of Coal Fly Ash as a Bulking Agent under Co-composting with Swine Manure and Saw Dust

  • Lee, Chang Hoon;Park, Seong Jin;Kim, Myung Sook;Yun, Sun Kang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.356-361
    • /
    • 2014
  • The coal fly ash (CFA) may be utilized as an extender for organic waste composting at the same time fully expected to solve all industrial waste disposal and sawdust tribe. The main objective in this study was to evaluate the effect of CFA addition as a bulking agent for swine manure composting. To determine the suitable addition rate of CFA as a bulking agent, 0, 10, 20 and 30% of saw dust were mixed with 30, 20, 10 and 0% of coal fly ash, respectively. Compost quality for swine manure composting was to evaluate temperature, pH, C/N ratio, and phytotoxicity as germination index. Stability of compost increased with increasing levels of CFA as bulking agent during swine manure composting due to the high alkaline materials including CFA. C to N ratio in treatment added CFA was higher than that of the control without CFA. After finishing composting, germination index of lettuce and cabbage in swine manure compost added 10% of CFA was similar to the control, all the heavy metal contents were far below the stipulated standard for organic farming. These results indicated tahr coal fly ash as bulking agents might be alternative materials to save saw dust and apply industrial products for swine manure composting.

Evaluation of Pyrolysis Carbon Black Modified Asphalt Binder for Fatigue and Low Temperature Crack (열분해 카본블랙을 이용한 아스팔트 바인더의 피로 및 저온 성능 평가)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2511-2515
    • /
    • 2013
  • Carbon black from pyrolysis of waste tires was used to modify and improve the fatigue properties and low temperature cracking of asphalt binder. 0%, 5%, 10%, 15% and 20% of pyrolyzed carbon black was mixed. Couple of laboratory tests, such as dynamic shear rheometer test and bending beam rheometer test, were carried out. The use of pyrolyzed carbon black decreased the fatigue at room temperature and improved the resistance of low temperature cracking up to $-12^{\circ}C$, but, was off the criteria at $-18^{\circ}C$.

Treatment of Industrial Wastes by Melting Using H.F. Induction Furnace (고주파 유도로를 이용한 산업 폐기물의 용융처리)

  • 정진기;정헌생;이재천;윤인주;남기대
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • Iron and slag were prepared by melting mixed industrial wastes in an induction furnace. The wastes were steel can, limestone sludge, waste foundry sand, coal fly ash, and glasses. The effects of their mixing ratio on the charactenstics of the meltcd slag were investigated. The wastes were melted to slag under the constant basicity of 1.2. It was found that the major phases of the slag were P-C,S and C,AS and then ratio was determined by the mixing ratio af waste materials. The recovery of iron was about 93-95%. The feasibility of using the slag as the aggregate was confirmed by thc elution and campression tests.

  • PDF

A Study of the Bottom Ash as Environmentally Grouting Materials (Bottom Ash를 이용한 그라우팅재의 환경적 연구)

  • Doh, Young-Gon;Kwon, Hyuk-Doo;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.5-11
    • /
    • 2006
  • The purpose of this study was to examine the proper mixing ratio of ordinary portland cement and Bottom Ash to recycle the Bottom Ash, which is an industrial waste. After the evaluation, the compressive strength and durability were assessed using the mixture of completely weathered soil (Hwangto), weathered granite soil, and Bentonite. Then environmental friendliness of this mixed material was examined through heavy metal leaching method. It was found out that proper mixing ratio is 6:4, and that the 6% mixture quantity of completely weathered soil (Hwangto), weathered granite soil, and Bentonite is the most effective for compressive strength and durability It was also found out through heavy metal leaching method that the Bottom Ash could be below the standard of the Clean Water Law.