• Title/Summary/Keyword: Mixed halide perovskite

Search Result 8, Processing Time 0.021 seconds

Direct Measurement of Diffusion Length in Mixed Lead-halide Perovskite Films Using Scanning Photocurrent Microscopy

  • Kim, Ahram;Son, Byung Hee;Kim, Hwan Sik;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • Carrier diffusion length in the light-sensitive material is one of the key elements in improving the light-current conversion efficiency of solar-cell devices. In this paper, we measured the carrier diffusion length in lead-halide perovskite ($MAPbI_3$) and mixed lead-halide ($MAPbI_{3-x}Cl_x$) perovskite devices using scanning photocurrent microscopy (SPCM). The SPCM signal decreased as we moved the focused laser spot away from the metal contact. By fitting the data with a simple exponential curve, we extracted the carrier diffusion length of each perovskite film. Importantly, the diffusion length of the mixed-halide perovskite was higher than that of the halide perovskite film by a factor of 3 to 6; this is consistent with the general expectation that the carrier mobility will be higher in the case of the mixed lead-halide perovskites. Finally, the diffusion length was investigated as a function of applied bias for both samples, and analyzed successfully in terms of the drift-diffusion model.

Recent Progress in Blue Perovskite LEDs

  • Joonyun, Kim;Jinu, Park;Byungha, Shin
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.449-457
    • /
    • 2022
  • Halide perovskites are emerging materials for next-generation display applications, thanks to their narrow emission linewidth and band gap tunability, capable of covering the entire range of visible light. Despite their short period of research, perovskite light emitting diodes (PeLEDs) have shown rapid progress in device external quantum efficiency (EQE) in the near-infrared (NIR), red, and green emission wavelengths, and the record EQE has exceeded over 20 %. However there has been limited progress with blue emission compared to the red and green counterparts. In this review, the current status and challenges of blue PeLEDs are introduced, and strategies to produce spectrally stable blue PeLEDs are discussed. The strategies include 1) a mixed halide system in the form of 3-dimensional (3D) perovskites, 2) colloidal perovskite nanocrystals and 3) low dimensional perovskites, known as quasi-2D perovskites. In the mixed halide system, previous reports based on the compositional engineering of 3D perovskites to reduce spectral instability (i.e., halide segregation) will be discussed. Since spectral instability issue originate from the mixed halide composition in perovskites, the two other strategies are based on enlarging the band gap with a single halide composition. Finally, the prospects for each strategy are discussed, for further improvement in spectrally stable blue PeLEDs.

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus;Abdur, Rahim;Singh, Son;Kim, Jae-Hun;Min, Kyeong-Sik;Kim, Jiyoung;Lee, Jaegab
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.700-711
    • /
    • 2018
  • CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.

Ion Migration in Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에서 이온 이동)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • In this review, recent researches on ion transport phenomena in organic metal halide perovskite materials, which have been popular all over the world, are summarized. Although different results have been reported depending on the perovskite material composition and applied voltage, iodide seems to migrate under actual solar cell operating conditions, and occasionally methylammonium migration is observed. Perovskite is a so-called mixed conductor in which electrons and ions move simultaneously at room temperature, which greatly influences the hysteresis of the perovskite solar cell current-voltage curve and the performance degradation due to long-term operation.

Optical Characterization of Cubic and Pseudo-cubic Phase Perovskite Single Crystals Depending on Laser Irradiation Time

  • Byun, Hye Ryung;Jeong, Mun Seok
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.42-45
    • /
    • 2018
  • Photovoltaic and optoelectronic devices based on hybrid metal halide perovskites ($MAPbX_3$; $MA=CH_3NH_3{^+}$, $X=Cl^-$, $Br^-$, or $I^-$) are rapidly improving in power conversion efficiency. Also, during recent years, perovskite single crystals have emerged as promising materials for high-efficiency photovoltaic and optoelectronic devices because of their low defect density. Here we show that the light soaking effect of mixed halide perovskite ($MAPbBr_{3-x}I_x$) single crystals can be explained using photoluminescence, time-resolved photoluminescence, and Raman scattering measurements. Unlike Br-based single crystal, Br/I mixed single crystal show a strong light soaking effect under laser irradiation condition that was related to the existence of multiple phases.

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

First Principles Study of Mixed Inorganic-Organic Perovskites (HC(NH2)2PbI3-CH3NH3PbBr3) for Photovoltaic Applications

  • Noh, Min Jong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.378-381
    • /
    • 2015
  • To produce low cost and efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear promising for most suitable solar cells owing to their high power conversion efficiency. Most recent research showes that formamidinium lead iodide ($FAPbI_3$) with methylammonium lead bromide ($MAPbBr_3$) improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination because incorporated $MAPbBr_3$ makes $FAPbI_3$-relatively unstable but comparatively narrow band gap-more stable composition. In respect to first principle study, we investigated band gap of $MAPbI_3$, $FAPbI_3$, $MAPbBr_3$, $(FAPbI_3)_{0.89}-(MAPbBr_3)_{0.11}$ and 0.615(eV), 0.466, 1.197, 0.518 respectively through EDISON DFT software. These results emphasize enhancing structure stability is important factor as well as finding narrow band gap.

  • PDF

A Growth and Characterization of CsPbBr3 Thin Film Grown by Thermal Chemical Vapor Deposition (열화학기상증착법을 이용한 CsPbBr3 박막 성장 및 특성 연구)

  • Ga Eun Kim;Min Jin Kim;Hyesu Ryu;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2023
  • In this study, inorganic perovskite films with different compositions were grown by thermal chemical vapor deposition depending on the substrate and their optical properties were compared. Inorganic perovskite crystals were grown on SiO2/Si and c-Al2O3 substrates using CsBr and PbBr2, respectively, under the same growth conditions. Cs4PbBr6-CsPbBr3 crystallites were grown on the SiO2 with polycrystalline structure, while a CsPbBr3 (100) dominant thin film was formed on the c-Al2O3 substrate with single crystal structure. From the photoluminescence measurement, CsPbBr3 showed typical green emission centered at 534 nm with a full width at half maximum (FWHM) of about 91 meV. The Cs4PbBr6-CsPbBr3 mixed structure exhibits blue-shifted emission at 523 nm with a narrow FWHM of 63 meV and a fast decay time of 6.88 ns. These results are expected to be useful for application in photoelectric devices such as displays, solar cells, and light sensors based on inorganic metal perovskites.