• Title/Summary/Keyword: Mixed electrolyte

Search Result 168, Processing Time 0.024 seconds

Fabrication of Organic Electrolytes for Electric Double Layer Capacitor with Activated Carbon Cloth Electrode (활성탄소계 섬유포 전극을 이용한 전기이중층 커패시터용 유기 전해액의 제조)

  • 강안수
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.95-108
    • /
    • 2000
  • Electrochemical charateristics of activated carbon fiber cloth(ACFC) electrode were studied with propylene carbonate(PC), ${\gamma}$-butyrolactone(GBL) and N,N-dimethyl-formamide(DMF) as a solvent and tetraethylammoniumtetrafluoroborate(TEABF$_4$), tetraethylammoniumhexafluorophosphate(TEABF$_{6}$), tetrabutylammoniumtetrafluoroborate(TBABF$_4$) and tetrabutylammonium hexafluorophosphate(TBAPF$_6$) as an electrolytes(active material). The concentrations of electrolytes were in the range of 0.2~1.2 N, the volume ratios of PC and DMF as a mixed solvent system, were 90:10, 80:20, 70:30, 60:40, 50:50, and 40:60 vol%. Electrochemical characteristics such as electric conductivity, internal resistance, and electric capacitance of fabricated unit cells were measured after the moisture of activated material was removed with molecular sieve. Electrochemical characteristics were better in mixed solvents system than in mono solvent system. The mono solvent system of 1.0 N electrolyte of GBL/TEABF$_4$ with activated carbon cloth electrodes showed better result but the mixed solvent system with PC and DMF/TEABF$_4$(50:50 vol%) and the concentration of 1.0 N electrolyte showed the best characteristics. Internal resistance was 3.47 $\Omega$ and specific capacitance was 19.1 F/g respectively.y.

  • PDF

Effect of n-Alkylamine Hydrochlorides on the Cloud Point of Nonionic Polyoxyethylated Surfactant

  • Han, Suk-Kyu;Kim, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 1976
  • The salting in and salting out of Octoxynol, N.F., a nonionic polyoxyethylated surfactant by n-alkylamine hydrochlorides ws investigated by measuring their effect on the cloud point of the surfactant at various salt concentrations. The carbon number of the alkyl chain was varied from zero to twelve. Ammonium chloride, methylamine hydrochloride and ethylamine hydrochloride tended to salt out the surfactant, lowering its cloud point in proportion to the salt concentration. n-Ankylamine and n-butylamine hydrochlorides showed salting-out effect at low concentrations of the electrolyte, while their effects were leveled off and showed rather salting-in trend at higher concentrations of the electrolyte. These salting-in effect was ascribed to the formation of a hydrotropy of the n-alky lammonium cations with the surfactant. The higher homolog compounds of n-alkylamine hydrochlorides showed extraordinarily high salting-in effect at very low oncentrations of the electrolyte. These large salting-in effects were more drastic as the chain length was getting longer. These large increases of the cloud point of the surfactant were attributed to the formation of mixed micelles of n-alkylammonium cations with the polyoxyethylated surfactant.

  • PDF

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Paper Ionophoretic Technique in the Study of Mixed Complexes

  • Tewari, Brij Bhushan
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.705-707
    • /
    • 2002
  • Stability constants of complexes of aluminium(III) and thorium(IV) with methionine and cysteine have been determined by modified paper electrophoretic technique at $\mu$ = 0.1 M. The proportion of ionic species of methionine and cysteine were varied by changing pH of background electrolyte. The stability constants of the complexes metal-methionine-cysteine have been found to be 4.31 ± 0.12 and 5.40 ± 0.19 (log K values) for $Al^{3+}\;and\;Th^{4+} $ complexes, at temperature 35 ${^{\circ}C}$, respectively.

The Initial Irreversible Capacity of the First Doping/Undoping of Lithium into Carbon

  • Doh, Chil-Hoon;Kim, Hyun-Soo;Moon, Seong-In
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.148-153
    • /
    • 2001
  • The initial irreversible capacity, $Q_i$, is one of the parameters to express the material balancing of the cathode to anode. We introduced new terms, which are the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface ($Q_{is}$), to express precisely the irreversibility of an electrode/electrolyte system. Two terms depended on kinds of active-materials and compositions of the electrode, but did not change with charging state. MPCF had the highest value of IIE and the lowest value of $Q_{is}$ in 1M $LiPE_6$/EC + DEC (1 : 1 volume ratio) electrolyte. IIE value of $LiCoO_2$ electrode was 97-98%, although the preparation condition of the material and the electrolyte were different. $Q_{is}$ value of $LiCoO_2$ was 0~1 mAh/g. MPCF-$LiCoO_2$ cell system had the lowest of the latent capacity. $Q_{is}$ value increased slightly by adding conductive material. IIE and $Q_{is}$ value varied with the electrolyte. By introducing PC to EC+DEC mixed solvent, IIE values were retained, but $Q_{is}$ increased. In case of addition of MP, IIE value increased and $Q_{is}$ value also increased a little.

  • PDF

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.

Effect of Mixing Ratio of Active Material on the Wettability in Lithium-Ion Battery Using Lattice Boltzmann Method (격자 볼츠만법을 이용한 리튬이온전지의 활물질 혼합비에 대한 함침성의 영향)

  • Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • The electrolyte wetting phenomena occurring in the electrode of lithium-ion battery was studied using lattice Boltzmann method (LBM). Recently, lithium-ion batteries are being mixed with small particles on the active material to increase the capacity and energy density during the electrode design stage. The change to the mixing ratio may influence the wettability of electrolyte. In this study, the changes in electrolyte distribution and saturation were investigated according to various mixing ratios of active material. We found that the variations in mixing ratio of active material affect the wetting mechanism, and result in changes to the wetting speed and wettability of electrolyte.

Cold Rolling Process for the Matrix Fabrication of the Mcfc (용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구)

  • Park, Sang-Kill;Rho, Chang-Joo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy (상온제련을 위한 네오디뮴의 비수계 전해 기초연구)

  • Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.29-35
    • /
    • 2018
  • In this study, the electrochemical redox behavior of neodymium in non-aqueous electrolytes was investigated to confirm the possibility of neodymium metallurgy at room temperature. The non-aqueous electrolytes include ionic liquids such as $[C_4mim]PF_6$, $[C_4mim]Cl$, and $[P_{66614}]PF_6$, ethanol which are highly soluble in neodymium salts, and mixed electrolytes based on carbonate with highly electrochemical stability. The electrochemical redox properties of neodymium were better than those of other electrolytes in the case of the mixed electrolyte based on ethylene carbonate (EC)/di-ethylene carbonate (DEC). Ethanol was added to improve the physical properties of the mixed electrolyte. Thorough the analysis about ionic conductivity of EC/DEC ratio, ethanol content and $NdCl_3$ concentration, the best electrolyte composition was 50 vol% content of ethanol and 0.5 M of $NdCl_3$. Using cyclic voltametry and linear sweep voltametry, a current peak estimated at -3.8 V (vs. Pt-QRE) was observed as a limiting current of neodymium reduction. Potentiostatic electrolysis for 18 hours at room temperature at -6 V (vs. Pt-QRE) confirmed that metallic neodymium was electrodeposited.