• Title/Summary/Keyword: Mixed Wastewater

Search Result 301, Processing Time 0.031 seconds

A Study on the Biogasification of Municipal and Industrial Wastewater Sludge (도시 하수 및 공장 폐수 슬러지의 바이오가스화에 관한 연구)

  • Kim, Jahyun;Kim, Seogku;Hwang, Injoo;Ahn, Jaehwan;Kang, Sungwon;Lee, Wontae;Lim, Junhyuk;Lee, Jeakun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.5-12
    • /
    • 2014
  • Anaerobic digestion was investigated for the stabilization of sludge, decrease of volatile solids, production of biogas for wastewater sludge. In this study, total solids and volatile solids, elemental analysis were conducted to determine characteristics of various types of sludges and investigate the feasibility of biogas production of Municipal Wastewater Sludge (MWS), Industrial Wastewater Sludge (IWS), mixed sludge (Mix), and Municipal Wastewater Sludg Cake (MWSC). Total solids, volatile solids, and C/N ratio were determined in the range of 11.2~20.6 %, 62.1~83.1 % of TS and 4.96~8.33 %. Using the biochemical methane potential (BMP test), mixed sludge and wastewater sludge finished the methane production within approximately 20 day and 16~17 day. Sludge cake finished within 10 day. Mixed sludge produced 395.5 mL $CH_4$ per g of Volatile Solid (VS) and resulted in the highest methane production. For carbon dioxide production, five sludges had similar value of accumulated carbon dioxide production except for sludge cake.

Livestock Wastewater Treatment Using MBR/NF/RO and Application of Post-Denitrification and Air Flotation Process to Treat Excess Sludge and NF/RO Brine (MBR/NF/RO를 이용한 가축폐수처리와 후탈질/응집가압부상을 이용한 잉여슬러지 및 농축수 처리 기술)

  • Na, Yumee;Bae, Jongbok;Moon, Taehun;Hwang, Yunyoung;Lee, Yangwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.407-414
    • /
    • 2013
  • Full scale livestock wastewater treatment plant (100 t/d) was constructed and operated to develop compact and cost effective treatment process for public plant as well as individual farm. Liquid form of livestock wastewater after belt press filter was treated through MBR/NF/RO. NF/RO brine water was mixed with livestock wastewater sludge and treated using denitrification, coagulation and air flotation process. Mixed effluent of NF/RO and air flotation meet public livestock wastewater treatment standard, BOD, T-N and T-P, 30 mg/L, 60 mg/L, 8 mg/L below, respectively. Condensed sludge of air flotation returned belt press filter. Dewatered cake contained 90% water and could be used fertilizer after mixing sawdust.

Evaluation on the Biodegradability of the MBT Wastewater (MBT 폐수의 생분해성 평가)

  • Lim, Ji-Young;Park, Jung-hwan;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.86-92
    • /
    • 2016
  • The possibility of the biological treatment of MBT wastewater generated from the vulcanization accelerator manufacturing process was investigated. MBT wastewater is not biodegradable because it hinders the activity of microorganisms, and approximately 10% of the total COD can be removed after a 7 day acclimation period. The optimal conditions of the MBT wastewater for the chemical pre-treatment was pH of 3.5 and the Fenton oxidation with the addition of $Fe^{3+}$ to the wastewater after agitation for 2 hours. The Fenton-treated MBT wastewater showed approximately 20% removal of COD when treated with the activated sludge process for the mixed paper wastewater and Fenton treated wastewater.

Anaerobic treatment of red-bean processing wastewater in a sludge bed reactor (슬러지반응기에서 팥가공폐수의 철기성 처리)

  • 안재동;금재우;홍종향
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.29-37
    • /
    • 1994
  • Anaerobic treatment of wastewater of the red- bean processing industry was carried out and discussed an anaerobic sludge bed reactor( ASBR) as a preliminary study to evaluate applicability of given processes. The dimension of reactor were same as 0.09m- ID$\times $1.5m- height. The type of substrate and the hydraulic retention time( HRT) were considered as experimental variables. The synthetic wastewater with glucose in the laboratory, the wastewater from the red bean processing industry mixed with synthetic wastewater with variation of mixing percent were fed as substrate. The hydraulic retention time was changed from one day to five days. The gas production, the methane content in produced gas, efficiencies of COD removal and 55 removal were evaluated as principal characteristics. With synthetic wastewater as a substrate and at a hydraulic retention time of one day, characteristics of ASBR was the gas production(12$\ell$/day ), the methane content of produced gas(60%), the efficiency of COD removal(92%) and 55 removal(30%). With the real wastewater and at a hydraulic retention time of one day, the gas production and the efficiency of COD removal of the ASBR decreased with the proportion of real wastewater. The gas production and the efficiency of COD removal with real wastewater only was decreased to 70% and 87% of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. With real wastewater only as a substrate in the ASBR, the gas production was decreased with an increase of HRT, but the efficiency of COD removal increased with HRTI like the usual trend reported. As a conclusion, the wastewater of the red- bean Processing industry could be treated by anaerobic digestion successfully in the ASBR.Anaerobic treatment of wastewater of the red- bean processing industry was carried out and discussed an anaerobic sludge bed reactor( ASBR) as a preliminary study to evaluate applicability of given processes. The dimension of reactor were same as 0.09m- ID$\times $1.5m- height. The type of substrate and the hydraulic retention time( HRT) were considered as experimental variables. The synthetic wastewater with glucose in the laboratory, the wastewater from the red bean processing industry mixed with synthetic wastewater with variation of mixing percent were fed as substrate. The hydraulic retention time was changed from one day to five days. The gas production, the methane content in produced gas, efficiencies of COD removal and 55 removal were evaluated as principal characteristics. With synthetic wastewater as a substrate and at a hydraulic retention time of one day, characteristics of ASBR was the gas production(12$\ell$/day ), the methane content of produced gas(60%), the efficiency of COD removal(92%) and 55 removal(30%). With the real wastewater and at a hydraulic retention time of one day, the gas production and the efficiency of COD removal of the ASBR decreased with the proportion of real wastewater. The gas production and the efficiency of COD removal with real wastewater only was decreased to 70% and 87% of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. With real wastewater only as a substrate in the ASBR, the gas production was decreased with an increase of HRT, but the efficiency of COD removal increased with HRTI like the usual trend reported. As a conclusion, the wastewater of the red- bean Processing industry could be treated by anaerobic digestion successfully in the ASBR.

  • PDF

A Study on Effect of Jet Mixed Separator Combination for Pre-treatment of Ultrafiltration Membrane Filtration Process (UF 막 여과 공정의 효과적인 전처리 공정으로 분류교반고액분리조(噴流攪拌固液分離槽) (Jet Mixed Separator: JMS) 도입 효과에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Watanabe, Yoshimasa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • In this research, we tried to combine the coagulation/sedimentation process as pre-treatment with UF membrane filtration to reduce the membrane fouling and to improve the permeate water quality. We used the Jet Mixed Separator (JMS) as coagulation/sedimentation process. We observed that the HPC and E.Coli can't be removed through the direct UF memebrane filtation of surface water. The removal efficiency of dissolved organic substances, indicated by E260 and DOC, was 40% and 15%, respectively. However, the removal efficiency of it increased two time as a result of combination of JMS process as coagulation/sedimentation pre-treatment. This was resulted from the formation of high molecular humic micro-floc through JMS process. The accumulation amount of irreversible cake layer which was not removed by backwashing was less than direct UF membrane filtration of surface water. Moreover, the loading rate of fouling induced substances, such as humic substances and suspended substances, on membrane surface decreased drastically through JMS process. As a result, the accumulation amount of irreversible cake on membrane surface was decreased.

The comparison of the adsorption characteristic of heavy metals onto soil mixed with food compost using retardation coefficient (지연계수를 이용한 음식물 퇴비 혼합 토양의 중금속 흡착특성 비교)

  • Joo, You-Yoen;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Adsorption experiment was carried out to find the adsorption capacity and characteristics of heavy metals(Cd, Pb) onto soil and mixed soil with food compost. Result showed that mixed soil having higher organic content adsorbed more heavy metal than soil, indicating that food compost can be used effectively to prevent soil pollution. Linear adsorption isotherm which adopted to find the adsorption characteristics was used to calculate Retardation Factor(R). The value of Retardation Factor(R)s of Pb and Cd in mixed soil, found as 34.54, 24.42 respectively, are higher than those in soil which were found as 4.64, 3.67, respectively. The value of Retardation Factor(R) using Freundlich adsorption isotherm could be presented by the functions of concentration and showed similar result as the linear one. But Freundlich adsorption isotherm showed higher relationship than linear one and the retardation factor(R) from freundlich adsorption isotherm was thought as more effective method to assess adsorption capacity because it could reflect gradient and intercept of the isotherm.

Treatment of Livestock Wastewater with Coagulant-loess (황토를 이용한 축산폐수의 처리에 관한 연구)

  • Park, Jin-Hee;Kim, Bo-Guk;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1799-1808
    • /
    • 2000
  • To investigate the applicability of loess as a coagulant. the optimum conditions of coagulation and efficiency comparison of several coagulants (PAC, PACS, LAS) in chemical treatment of livestock wastewater were performed. As a result, the optimum mixing ratio of loess and lime(CaO) was 3:7. The optimum dosage of the mixed coagulant was 30 g/L. The optimum speed for rapid mixing of the mixed coagulant was 200 rpm at 1 min. and the optimum speed for slow mixing was 50 rpm at 10 min. The mixed coagulant showed the removal efficiency of turbidity, SS, BOD, $COD_{cr}$. T-P and TKN to 95.8%, 92.5%, 71.6%, 71.1%, 98.2% and 32.5%, respectively, which was better than other several coagulants. The mixed coagulant was possible to use as substitutional coagulants of traditional coagulant, and the producted sludge can use as a soil amendments.

  • PDF

Isolation and Charaterization of Dye-Degrading Microorganisms for Treatment of Chromaticity Contained in Industrial Dyeing Wastewater (염색공단폐수의 색도처리를 위한 염료분해 균주의 분리와 특성)

  • Kim, Jung Tae;Park, Guen Tae;Lee, Geon;Kang, Kyeong Hwan;Kim, Joong Kyun;Lee, Sang Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.129-142
    • /
    • 2014
  • To treat chromaticity contained in effluents of dyeing wastewater efficiently, potent dye-degrading microorganisms were isolated from influent water, aeration- tank sludge, recycle water and settling-tank sludge located in leather and dyeing treatment plant. Six potent strains were finally isolated and identified as Comamonas testosteroni, Methylobacteriaceae bacterium, Stenotrophomonas sp., Kluyveromyces fragilis, Ascomycetes sp. and Basidiomycetes sp. When Basidiomycetes sp. was inoculated into ME medium containing basal mixed-dyes, 93% of color was removed after 8 days incubation. In the same experiment, the 1:1 mixed culture of Basidiomycetes sp. and photosynthetic bacterium exhibited 88% of color removal; however, it showed better color removal for single-color dyes. The aeration-tank and settling-tank samples revealed higher color removal (95-96%) for black dyes. The settling-tank sample also revealed higher color removal on basal mixed-dyes, which resulted in 90% color removal after 6-h incubation. From the above results, it is expected to achieve a higher color removal using the mixed microorganisms that were isolated from aeration-tank and settling-tank samples.

Nutrients Removal of Municipal Wastewater and Lipid Extraction with Microalgae (조류를 이용한 하수고도처리 및 지질추출)

  • Park, Sangmin;Kim, Eunseok;Jheong, Weonhwa;Kim, Geunsu;Ahn, Kyunghee;Han, Jinseok;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.796-803
    • /
    • 2012
  • Potential feasibility of nutrients removal and biofuel production with microalgae was evaluated in batch culture. Distribution of microalgae in fresh water including reservoir and river was investigated to search for the species with high content of lipid that could converted into biofuel. Green algae, Chlorella and Scenedesmus sp., these are known as species containing high lipid content for biodiesel production, were observed in both summer and autumn season. However another highly lipid-containing species, botryococcus sp. was not observed in this study. In mixed culture of microalgae using synthesized wastewater medium, green algae were found to be dominant, comparing to other species of diatoms and blue-green algae. And microalgae were also capable of removing nitrogen and phosphorus in batch experiments. During the culture period of 14 days, removal efficiencies of nitrate and phosphorus were 30% and 82%, respectively. Furthermore, content of the intracellular lipid extracted from algae cell was as favorable as 12-30% in the mixed culture where Scenedesmus and Chlorella sp. were dominant. Therefore the mixed culture of microalgae could be applied to biofuel production and tertiary wastewater treatment, even though there are economic barriers to overcome.

Simultaneous Removal of Organic and Nitrogen in the Treatment of Fish Processing Wastewater using Entrapped Mixed Microbial Cell (EMMC) Process (Entrapped Mixed Microbial Cell (EMMC) 공정을 이용한 수산물 가공 폐수처리에서 유기물 및 질소 동시제거)

  • Jeong, Byung Cheol;Park, Kwon Sam;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.492-497
    • /
    • 2006
  • Feasibility of simultaneous removal of organic materials and nitrogen in the wastewater from fisheries processing plant was evaluated using entrapped mixed microbial cell (EMMC) process. The experiment was performed using activated sludge from municipal sewage treatment plant which was immobilized with gel matrix by cellulose triacetate. It was found the stable operation at the treatment system which is composed of anoxic and oxic tank, was possible when the organic and nitrogen loading rates were increased stepwise. The organic and nitrogen loading rates were conducted from 0.65 to $1.72kgCOD/m^3/d$ and from 0.119 to $0.317kg\;T-N/m^3/d$ with four steps, respectively. The maximum nitrogen loading rate which could satisfy the regulated effluent standard of nitrogen concentration, was $0.3kg\;T-N/m^3/d$. The removal efficiency of total nitrogen was decreased apparently as increasing nitrogen loading rates, whereas the removal efficiency of ammonium nitrogen was effective at the all tested nitrogen loading rates. Therefore, it was concluded that nitrification was efficient at the system. Nitrate was removed efficiently at the anoxic tank. whereas the nitrification efficiency at the oxic tank ranged 94.0% to 96.9% at the tested loading rates. The removal efficiencies of chemical oxygen demand (COD) and those of total nitrogen at the entire system ranged from 94.2% to 96.6% and 73.4% to 83.4%, respectively.