• Title/Summary/Keyword: Mixed Particle

Search Result 816, Processing Time 0.035 seconds

Manufacturing and Characterization of $CuInS_2$ Nanopowder for Compound Thin Film Solar Cell (화합물 박막 태양전지 적용을 위한 $CuInS_2$ 나노분말의 제조 및 특성 평가)

  • Lee, Dae-Girl;Lee, Nam-Hee;Oh, Hyo-Jin;Yun, Yeong-Ung;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2113_2114
    • /
    • 2009
  • Chalcopyrite based sollar cells have received much attention because of their tunable electronic and optical properties. As a typical ternary chalcopyrite material, $CuInS_2$ has been considered as one of the most popular and promising candidates as absorber materials for photovoltaic applications because of its high absorption coefficient and environmental consideration. In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at $196^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally turned to black by reduction of OH- radicals. The prepared powders were fully characterized using SEM, XRD. The particle shape of black colored powders showed sphere with about 50 nm in particle size compared to those with dark green colored powders showed irregular shape with about $1{\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$.

  • PDF

The Use of Particle Swarm Optimization for Order Allocation Under Multiple Capacitated Sourcing and Quantity Discounts

  • Ting, Ching-Jung;Tsai, Chi-Yang;Yeh, Li-Wen
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • The selection of suppliers and the determination of order quantities to be placed with those suppliers are important decisions in a supply chain. In this research, a non-linear mixed integer programming model is presented to select suppliers and determine the order quantities. The model considers the purchasing cost which takes into account quantity discount, the cost of transportation, the fixed cost for establishing suppliers, the cost for holding inventory, and the cost of receiving poor quality parts. The capacity constraints for suppliers, quality and lead-time requirements for the parts are also taken into account in the model. Since the purchasing cost, which is a decreasing step function of order quantities, introduces discontinuities to the non-linear objective function, it is not easy to employ traditional optimization methods. Thus, a heuristic algorithm, called particle swarm optimization (PSO), is used to find the (near) optimal solution. However, PSO usually generates initial solutions randomly. To improve the PSO solution quality, a heuristic procedure is proposed to find an initial solution based on the average unit cost including transportation, purchasing, inventory, and poor quality part cost. The results show that PSO with the proposed initial solution heuristic provides better solutions than those with PSO algorithm only.

Preparation and Evaluation of Freeze-dried Solid Lipid Nanoparticles with Various Cryoprotectants

  • Li, Ri Hua;Seo, Seung-Yong;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.39-43
    • /
    • 2010
  • Solid lipid nanoparticles (SLNs) were freeze-dried to obtain a stable solid dosage form with the aid of various cryoprotectants such as trehalose, sucrose, glucose, fructose, and glycerol. Tricaprin(TC) and trilaurin(TL) were used as lipid matrices for SLNs and stabilizers were egg phosphatidylcholine and pegylated phospholipid. All cryoprotectants tested did not cause changes in mean particle size of SLNs when mixed with SLNs before freeze-drying. However, the mean particle sizes of reconstituted SLNs after freeze-drying were significantly different from those of the un-lyophilized original SLN dispersions depending on the types and concentration of cryoprotectants. Although the freeze-dried SLNs without any cryoprotectants were easily reconstituted by hand-shaking, the mean particle size drastically increased (> $8\;{\mu}m$ for TC SLNs and around $1\;{\mu}m$ for TL SLNs) compared to that of un-lyophilized original dispersion (97 nm for TC SLNs and 164 nm for TL SLNs). Trehalose and sucrose were the most effective additives to protect the SLNs during lyophilization. The reconstituted SLNs were physically stable for 24 hours when lyophilized with 12.5% trehalose, sucrose, glucose, fructose or glycerol.

Effect of Non-thermal plasma Reactor construction by $CF_4$ decomposition ($CF_4$ 분해에 미치는 비열플라즈마 반응기 구조의 영향)

  • Kim, Sun-Ho;Park, Jae-Yun;Ha, Hyun-Jin;Hwang, Bo-Guk;Kim, Kwang-Soo;Rim, Geun-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.912-916
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for a simulated two plasma reactors which are metal particle reactor and spiral wire reactor as function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25[%] over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. The $CF_4$ decomposition rate used $Ar-N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $Ar-N_2$ base as were similar, but in case of air base they were different.

  • PDF

Characterization and Manufacturing for Solar Cells $CuInS_2$ Nanopowder by polyol process (Polyol process를 이용한 태양전지용 $CuInS_2$ 나노분말 제조 및 특성평가)

  • Lee, Dae-Girl;Lee, Nam-Hee;Oh, Hyo-Jin;Yun, Yeong-Ung;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.30-32
    • /
    • 2009
  • In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at 196$^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally fumed to black by reduction of $OH^-$ radicals. The prepared powders were fully characterized by SEM, XRD and UV-Vis. The particle shape of black colored powders showed sphere with about 30 nm in particle size compared to those with dark green colored powders showed irregular shape with about 1 ${\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$. The UV-Vis spectra showed broad shoulder at 430 and 780 nm corresponding to 2.78 and 1.58 eV for the dark green colored one and black colored one, respectively.

  • PDF

Effect of Anion Generating Air Cleaner on the Components of ETS in a Closed Room (음이온 발생 공기청정기에 의한 밀폐된 실내공간에서의 ETS성분 변화)

  • Hwang, Keon-Joong;Rhee, Moon-Soo;Ra, Do-Young
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.124-130
    • /
    • 1998
  • This study was conducted to evaluate the ability of anion generating air cleaner to remove gases, vapor and particles from closed room contaminated with environmental tobacco smoke (ETS). The measurements covered particle sizes of 13.8-542.5nm, particle concentration, surface area, volumes UVPM, FPM, solanesol, and the following gases and vapor; carbon dioxide, carbon monoxide, nicotine, and 3-ethenylpyridine. Tobacco smoke was generated and mixed in a closed room in which the airflow rates were in the range of 0.00-0.04 m/s. The anion generating air cleaner was startedl and the decay rates for the gases, vapor and particles were measured, When the use of anion generating air cleaner, solid components of ETS, such as respirable suspended particle (RSP), utraviolet particulate matter (UVPM, fluorescent particulate matter (FPM) and solanesol was sharply decreased, and vapor phase components of ETS, such as nicotines 3-ethenylpyidine were modelately decreased by time elapse. Even the use of anion generation air cleaner, the decreasing rate of carbon dioxide concentration was similar with control, and the decreasing rate of carbon monoxide was slower than that of control. Our results indicated that the use of anion generting air cleaner had an effect on reduction of solid and vapor components from ETs, but it had no effect on gaseous components of ETS.

  • PDF

The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet - (PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 -)

  • Kim, Dong-Keon;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

Synthesis of Zirconium-Based Nanopowder by the Plasma Arc Discharge Process (플라즈마 아크 방전법에 의한 Zr계 나노분말 제조)

  • Lee, Gil-Geun;Kim, Kyong-Ju;Park, Je-Shin
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.63-69
    • /
    • 2007
  • The present study was focused on the synthesis of a zirconium-based alloyed nanopowder by the plasma arc discharge process. The chemical composition, phase structure, particle size and hydrogen sorption property of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD, SEM, XPS and the ASTM-F798 method. The chemical composition of the synthesized Zr-V-Fe-based powders approached that of the raw material with an increasing hydrogen fraction in the powder synthesis atmosphere. The synthesized $Zr_{55}V_{29}Fe_{16}$ powder consist of a mixed phase structure of the $Zr,\;ZrH_2,\;FeV\;and\;Zr(V_{1-x}Fe_{x})_2$ phases. This powder has an average particle size of about 20 nm. The synthesized $Zr_{55}V_{29}Fe_{16}$ nanopowder showed getter characteristics, even though it had a lower hydrogen sorption speed than the $Zr_{57}\;V{36}\;Fe_7$ getter powder. However, the synthesized Zr nanopowder with an average particle size of 20 nm showed higher hydrogen sorption speed than the $Zr_{57}\;V{36}\;Fe_7$ getter powder.

Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application (다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향)

  • Jun, Shinhee;Lee, Wonjoo;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

Critical State Parameters of a High Compressible Jeju Sand (압축성이 큰 제주해사의 한계상태정수)

  • Lee, Moon-Joo;Hong, Sung-Jin;Choi, Young-Min;Kim, Min-Tae;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study conducted a series of drained triaxial test in order to determine the critical state parameters of a high compressible Jeju sand. Jeju sand is classified into mixed sand containing both siliceous and calcareous materials and has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. It is observed that the behavior of Jeju sand is similar to that of general calcareous sand. The friction angle of Jeju sand at critical state gradually decreases with increasing the mean effective stress. Test result shows that the particle crushing resulted from stress during shear causes the reduction of void ratio at critical state.

  • PDF