• Title/Summary/Keyword: Mixed Combustion

Search Result 277, Processing Time 0.033 seconds

Circulating Fluidized Bed Combustion of Korean Anthracite and Fabricated Anthracite Fines (국내 무연탄과 미분을 성형한 무연탄의 순환유동층 연소)

  • Shun, Do-Won;Bae, Dal-Hee;Oh, Chang-Sup;Kim, Heon-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.553-558
    • /
    • 2010
  • To solve the problems of the low combustion activity of Korean anthracite and the abundant loss of unburned carbon in fly ash, pellet coal was fabricated from coal fines and fly ash, and the mixed combustion of coarse coal with the pellet coal was examined in the circulating fluidized bed combustor of a 0.1 MW scale test unit. In the combustion of the raw coal only, the significant amount of coal fines was entrained, resulting in overheat at the top of the combustor. With the coarse coal that most fines were eliminated, however, the combustion temperature was maintained stable. The mixed combustion of coarse and raw coals was also feasible even though it often went unstable. The mixed combustion of the coarse coal with the pellet coal was as stable as the coarse coal combustion, showing a promise that the combustion of the Korean anthracite in commercial circulating fluidized bed boilers could be further enhanced.

Diesel Engine Combustion Characteristics on the Natural Gas Mixing (천연가스 혼합에 의한 디젤기관의 연소특성)

  • Park, Myung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.9-12
    • /
    • 2007
  • In this study, a new method of combustion characteristics have been proposed to reduce exhaust emissions in a diesel engine using four kinds of mixed fuel. Mixed fuels show four different torque ratios between diesel oil md natural gas, which are 4:0, 3:1, 2:2 and 1:3. In order to investigate the exhaust gas during combustion, exhaust gases are sampled by gas analyzer, for example NOx, Soot, CO, and HC, as the RPM changed. As a result, the NOx, CO, and HC concentrations of mixed fuel are higher than those of diesel oil only. However, the Soot concentration of mixed fuel is lower when diesel oil is burned.

  • PDF

Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회특성)

  • Kim, Han-Seok;Choi, Won-Seok;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Catalytic Combustion of Benzene over CuO-CeO2 Mixed Oxides Prepared by Co-precipitation Method (침전법으로 제조된 CuO-CeO2 혼합산화물에서 벤젠의 촉매연소반응)

  • Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • Catalytic combustion of benzene over CuO-$CeO_2$ mixed oxides prepared by co-precipitation method were investigated. The CuO-$CeO_2$ mixed oxides were also prepared using different precipitant and CuO precursor. They were characterized by XRD, BET, XPS and $H_2-TPR$. In the CuO-$CeO_2$ catalysts, characteristic copper oxide peaks were shown at $2{\Theta}=35.5^{\circ}$ and $38.5^{\circ}$ regardless of the precipitant. The Cu0.35 catalyst prepared using $NH_4OH$ as a precipitant revealed the highest activity on the combustion of benzene. In addition, the pretreatment with hydrogen enhanced the catalytic activity and the catalyst reduced at $400^{\circ}C$ showed the highest activity on the combustion of benzene.

Mixed combustion expert system for General Manager at Thermal Power Plant (저열량탄 혼소 전문가시스템 구현 방안)

  • Kim, Hae-Soon;Kim, Sun-Ic;Joo, Yong-Jae;Kim, Ji-Hyun;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1374-1375
    • /
    • 2011
  • Mixed combustion expert system is implemented to prevent various problems in combustion process by increasing rate of mixing low calorific value coal to reduce costs. This system shows optimal coal mixture rate by interfacing CBS(Coal Blending Screener, Implementing slagging and fouling factors by coal characteristic and algorithm), SGE(Stream Generate Expert, Combustion process model) and CFS(Configured Fireside Simulator, Computational fluid dynamics).

  • PDF

Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach (3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.

Development of glass melting furnace using both plasma and combustion (플라즈마/연소 융합기술을 이용한 세라믹계 유리 분말 기중용해로 개발)

  • Dong, Sangkeun;Lee, Eunkyung;Jeong, Woonam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.203-205
    • /
    • 2014
  • This paper is suggesting about glass melting technology, using both plasma and combustion heat source. The mixed flame was formed to flow pattern of turning by plasma and combustion in melting zone. The burning time was extremely extended for vitrification of raw materials in melting zone, as a result, meting time was significantly reduced. This system was designed to smaller size than existing glass melting facilities. We had achieved to 30% energy saving, due to reduce residence time of melted materials inside furnace.

  • PDF

Combustion Instability and Active Control in a Dump Combustor (덤프 연소기에서의 연소불안정과 능동제어에 대한 연구)

  • Ahn Kyu-Bok;Yu Kenneth;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.445-449
    • /
    • 2005
  • The mixed acoustic-convective mode combustion instability and the possibility of combustion control using a loudspeaker to these instabilities were studied. By changing inlet velocity, combustor length and equivalence ratio, the dynamic pressure signals and the flame structures were simultaneously taken. The results showed that as the combustor length increased and the inlet velocity decreased, the instability frequency decreased and the maximum power spectral densities of the dynamic pressures generally decreased. The instability frequency could be affected by an equivalence ratio over the operating conditions. From the data of close-loop control, as the loudspeaker may work out-of-phase with the natural instability, the optimum time-delay controller was confirmed to be able to reduce the vortex shedding from the mixed acoustic-convective mode combustion instability.

  • PDF