• Title/Summary/Keyword: Mix encoding

Search Result 2, Processing Time 0.018 seconds

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Cloning of a Gene Encoding Dextranase from Lipomyces starkeyi and its Expression in Pichia pastoris

  • Kang, Hee-Kyoung;Park, Ji-Young;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.172-177
    • /
    • 2009
  • A gene(lsd1) encoding dextranase from Lipomyces starkeyi KSM22 has been previously cloned, sequenced, and expressed in Saccharomyces cerevisiae. The gene consisting of 1,824 base pairs and encoding a protein of 608 amino acids was then cloned into and secretively expressed in Pichia pastoris under the control of the AOX1 promoter. The dextranase productivity of the P. pastoris transformant(pPIC9K-LSD1, 134,000 U/I) was approximately 4.2-fold higher than that of the S. cerevisiae transformant(pYLSD1, 32,000 U/I) cultured in an 8-1 fermentor. Over 0.63 g/l of active dextranase was secreted into the medium after methanol induction. The dextranase of the P. pastoris transformant, as analyzed by SDS-PAGE and Western blotting, showed only one homogeneous band. This dextranase of the P. pastoris transformant showed a broad band near 73 kDa. Rabbit monoclonal antibodies against a synthetic LSD1 peptide mix also recognized approximately 73 kDa.