• Title/Summary/Keyword: Mitochondrial ion channels

Search Result 12, Processing Time 0.019 seconds

Ginsenoside Rd and ischemic stroke; a short review of literatures

  • Nabavi, Seyed Fazel;Sureda, Antoni;Habtemariam, Solomon;Nabavi, Seyed Mohammad
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2015
  • Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.

Screening of Peroxynitrite and DPPH Raoical Scavenging Activities from Salt Marsh Plants (염생식물로부터 Peroxynitrite와 DPPH 라디칼 소거 활성 검색)

  • 서영완;이희정;김유아;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • A peroxynitrite is formed when superoxide and nitric oxide exist at near eqimolar ratio in biological systems. Although not a free radical by chemical nature, peroxynitrite is a powerful oxidant having a wide array of tissue damaging effects ranging from lipid oxidation and inactivation of enzymes and ion channels through protein oxidation and nitration to inhibition of mitochondrial respiration. During our search for new antioxidizing components from natural resources, twenty salt marsh plants were screened for their ONOO and DPPH radical scavenging activities. Among them, methanol extract of Rosa rugosa, lxeris tamagawaensis, Erigeron annus, Tetragonia tetragonoides, Imperata cylindrica, and Suaeda japonica inhibited more than 85% of peroxynitrite produced by 3-morpholinsydnonimine (SIN-1) at a concentration of 5 $\mu\textrm{g}$/$m\ell$. In addition, Rosa rugosa, Artemisia capillaris, Erigeron annus and Ixeris tamagawaensis showed significant scavenging effect against DPPH (1,1-diphenyl-2-picrylhydrazyl radical).