• 제목/요약/키워드: Mitochondrial genome

검색결과 203건 처리시간 0.032초

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF

DNA Barcoding Korean Birds

  • Yoo, Hye Sook;Eah, Jae-Yong;Kim, Jong Soo;Kim, Young-Jun;Min, Mi-Sook;Paek, Woon Kee;Lee, Hang;Kim, Chang-Bae
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.323-327
    • /
    • 2006
  • DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxidase I (COI) might serve as a DNA barcode for identifying animal species such as North American birds, insects and fishes. The present study tested the effectiveness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI barcode for 92 species of Korean birds and found that species identification was unambiguous; the genetic differences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased intra- and interspecies sampling, as well as supplementation of the mitochondrial barcodes with nuclear ones, is needed.

Genetic Diversity among Local Populations of the Gold-spotted Pond Frog, Rana plancyi chosenica (Amphibia: Ranidae), Assessed by Mitochondrial Cytochrome b Gene and Control Region Sequences

  • Min, Mi-Sook;Park, Sun-Kyung;Che, Jing;Park, Dae-Sik;Lee, Hang
    • Animal Systematics, Evolution and Diversity
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2008
  • The Gold-spotted pond frog, Rana plancyi chosenica, designated as a vulnerable species by IUCN Red list. This species is a typical example facing local population threats and extinction due to human activities in South Korea. A strategic conservation plan for this endangered species is urgently needed. In order to provide information for future conservation planning, accurate information on the genetic diversity and taxonomic status is needed for the establishment of conservation units for this species. In this study, we used a molecular genetic approach using the mitochondrial cytochrome b gene and control region sequences to find the genetic diversity of gold-spotted pond frogs within South Korea. We sequenced the mitochondrial DNA cytochrome b gene and control region of 77 individuals from 11 populations in South Korea, and one from Chongqing, China. A total of 15 cytochrome b gene haplotypes and 34 control region haplotypes were identified from Korean gold-spotted pond frogs. Mean sequence diversity among Korean gold-spotted pond frogs was 0.31% (0.0-0.8%) and 0.51% (0.0-1.0%), respectively. Most Korean populations had at least one unique haplotype for each locus. The Taean, Ansan and Cheongwon populations had no haplotypes shared with other populations. There was a sequence divergence between Korean and Chinese gold-spotted pond frogs (1.3% for cyt b; 2.9% for control region). Analysis of genetic distances and phylogenetic trees based on both cytochrome b and control region sequences indicate that the Korean gold-spotted pond frog are genetically differentiated from those in China.

Complete Mitochondrial Genome Sequence of the Yellow-Spotted Long-Horned Beetle Psacothea hilaris (Coleoptera: Cerambycidae) and Phylogenetic Analysis among Coleopteran Insects

  • Kim, Ki-Gyoung;Hong, Mee Yeon;Kim, Min Jee;Im, Hyun Hwak;Kim, Man Il;Bae, Chang Hwan;Seo, Sook Jae;Lee, Sang Hyun;Kim, Iksoo
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.429-441
    • /
    • 2009
  • We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between $tRNA^{Ser}$(UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one $tRNA^{Arg}$-like sequence and one $tRNA^{Lys}$-like sequence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.

Complete mitochondrial genome of Rotunda rotundapex Miyata & Kishida 1990 (Lepidoptera: Bombycidae), which was named as Bombyx shini Park & Sohn 2002

  • Park, Jeong Sun;Kim, Min Jee;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제44권2호
    • /
    • pp.55-64
    • /
    • 2022
  • Bombyx shini Park & Sohn, 2002 (Lepidoptera: Bombycidae), which was listed as an endemic species in South Korea has recently been renamed as the East Asian silk moth Rotunda rotundapex Miyata & Kishida, 1990 (Lepidoptera: Bombycidae). In this study, we sequenced the complete mitochondrial genome (mitogenome) of the R. rotundapex to announce genomic characteristics and to clarify its validity with a new name. The 15,294-bp long complete mitogenome comprises a typical set of genes [13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes] and one major noncoding, A + T-rich region, with an arrangement identical to that observed in most lepidopteran mitogenomes. The A/T content of the whole mitogenome was 79.22%; however, it varied among the regions/genes as follows: A + T-rich region, 91.62%; srRNA, 84.67%; lrRNA, 83.01%; tRNAs, 81.43%; and PCGs, 77.46%. Phylogenetic analyses of 35 species in the Bombycoidea superfamily showed the sister relationship between the families Sphingidae and Bombycidae s. str., with the higher nodal support [bootstrap support (BS) = 78%]. The Saturniidae was placed as the sister to the two families, but the nodal support for this relationship was low (BS = 53%). Current R. rotundapex was placed together with previously reported con-species with the highest nodal support, forming a separate clade from Bombyx, validating that B. shini can have a new genus name, Rotunda. However, the Korean R. rotundapex showed a substantial sequence divergence at 5.28% to that originated from an individual of type locality Taiwan in 1,459-bp of COI sequences. Considering such a high sequence divergence an additional study, which includes morphological and DNA barcoding data from further extensive distributional range maybe is needed for further robust taxonomic conclusion.

매미나방의 미토콘드리아 게놈 분석 (Complete Mitochondrial Genome of the Gypsy Moth, Lymantria dispar (Lepidoptera: Erebidae))

  • 정나라;남영우;이원훈
    • 한국응용곤충학회지
    • /
    • 제61권3호
    • /
    • pp.507-512
    • /
    • 2022
  • 매미나방은 산림과 과수에 심각한 피해를 입히는 해충이다. 본 연구에서는 국내 매미나방의 미토콘드리아 게놈(15,548 bp)을 분석하였다. 13개의 PCG와 2개의 rRNA를 연결한 서열(13,568 bp)을 사용한 23개의 미토콘드리아 게놈의 계통분석 결과, 분석한 매미나방은 다른 지역의 매미나방과 같은 과에 속하며 각각의 과(Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae)들은 높은 노드수치로 단계통을 형성하였다.

파라핀조직을 이용한 미토콘드리아 DNA 돌연변이 확인 (Identification of a Mitochondrial DNA Mutation in Paraffin-Embedded Muscle Tissues)

  • 김상호;유석호
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.296-300
    • /
    • 2004
  • 환자의 생조직, 얼린 조직 혹은 혈액이 없는 경우에, formalin으로 고정된 파라핀조직을 이용하여 미토콘드리아 돌연변이를 확인할 수 있는지를 조사하였다. MELAS 환자 4명의 파라핀조직을 택해 이들 조직으로부터 DNA를 추출하여 대부분의 MELAS 환자 미토콘드리아 DNA의 tRN $A^{Leu(UUR)}$ gene의 3243지역에서 발견되는 Adenine의 Cuanine으로의 염기치환을 확인하고자 하였다. 실험결과 3명의 환자에게서 이 점 돌연변이를 확인할 수 있어 이들 파라핀조직의 상태가 좋은 것으로 여겨져 미토콘드리아 DNA 돌연변이 연구에 파라핀조직을 활용할 수 있을 것으로 보인다.다.

Repair of UV-induced Cyclobutane Pyrimidine Dimers in Human Mitochonrial DNA-less Cells

  • Ikushima, Takaji;Gu, Ning;Tanizaki, Yuichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.479-481
    • /
    • 2002
  • UV-induced DNA damage causes cell killing and mutations leading to carcinogenesis. In normal human cells, UV damage such as cyclobutane pyrimidine dimers (CPDs) and primidine-prymidone (6-4) photoproducts are mainly repaired by nucleotide excision repair mechanism. The molecular processes have been well characterized recently. To know the influence of mitochondrial genome on the nucleotide excision repair mechanism against CPDs, we comparatively examined the production of CPDs by UVC irradiation and their repair kinetics in human cells completely lacking mitochondrial DNA (mtDNA) and the parental HeLa S cells. Whole DNA extracted from the cells exposed to UVC was treated with T4-endonuclease V to break the phosphodiester bond adjacent to CPDs. The DNA was electrophoresed in a denaturing agarose gel, which was visualized by ethidium bromide staining. The relative amount of CPDs was determined by image analysis using NIH Image software. MtDNA- less (rho-O) cells were apparently more sensitive to UVC than HeLa S cells, while the level of induction of CPDs in rho-O and HeLa cells was comparable. The repair of CPDs was less efficient in rho-O cells compared with HeLa cells. The residual amount of CPDs after 24-h repair was larger in rho-O cells than in HeLa cells where more than 90 % of CPDs were repaired by then. The non-repaired CPDs would lead to apoptosis in rho-O cells. These results suggest that mitochondrial genome may contribute to some ATP-dependent steps in nucletide excision repair by supplying sufficient ATP which is generated through a respiratory chain in mitochondria.

  • PDF

Mitochondrial Genome Microsatellite Instability and Copy Number Alteration in Lung Carcinomas

  • Dai, Ji-Gang;Zhang, Zai-Yong;Liu, Quan-Xing;Min, Jia-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2393-2399
    • /
    • 2013
  • Objective: Mitochondrial DNA (mtDNA) is considered a hotspot of mutations in various tumors. However, the relationship between microsatellite instability (MSI) and mtDNA copy number alterations in lung cancer has yet to be fully clarifieds. In the current study, we investigated the copy number and MSI of mitochondrial genome in lung carcinomas, as well as their significance for cancer development. Methods: The copy number and MSI of mtDNA in 37 matched lung carcinoma/adjacent histological normal lung tissue samples were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays for sequence variation, followed by sequence analysis and fluorogenic 5'-nuclease real-time PCR. Student's t test and linear regression analyses were employed to analyze the association between mtDNA copy number alterations and mitochondrial MSI (mtMSI). Results: The mean copy number of mtDNA in lung carcinoma tissue samples was significantly lower than that of the adjacent histologically normal lung tissue samples (p<0.001). mtMSI was detected in 32.4% (12/37) of lung carcinoma samples. The average copy number of mtDNA in lung carcinoma samples containing mtMSI was significantly lower than that in the other lung carcinoma samples (P<0.05). Conclusions: Results suggest that mtMSI may be an early and important event in the progression of lung carcinogenesis, particularly in association with variation in mtDNA copy number.