• 제목/요약/키워드: Mitochondrial activation

검색결과 353건 처리시간 0.027초

루테올린의 간암세포 성장 억제효능 및 새로운 작용기전 (Anti-cancer Effects of Luteolin and Its Novel Mechanism in HepG2 Hepatocarcinoma Cell)

  • 황진택;양혜정
    • KSBB Journal
    • /
    • 제25권6호
    • /
    • pp.507-512
    • /
    • 2010
  • In this study, we investigated the ability of luteolin, a plant derived flavonoid on hepatocarcinoma cell growth using HepG2 cell culture system. We found that luteolin increased the Smac/DIABLO releases, a mitochondrial protein that potentiates apoptosis. Luteolin also induced either transcriptional activity or expression of PPAR-gamma, a target of cancer growth that PPAR-gamma agonist sensitizes to apoptosis in certain cancer types. To find the possible upstream target molecules of PPAR-gamma activated by luteolin treatment, we used compound C, a specific inhibitor of AMP-activated protein kinase. Pre-treatment of Compound C significantly restored the activation or expression of PPAR-gamma stimulated by luteolin. This result indicated that AMPK signaling might be involved in the activation or expression of PPAR-gamma signaling pathway stimulated by luteolin. Moreover, we also found that luteolin inhibited the insulin-stimulated Akt phosphorylation as well as AICAR, a specific AMPK activator. These results propose that luteolin significantly induces cancer cell death through modulating survival signal pathways such as PPAR-gamma and Akt. AMPK signaling pathway may be an upstream regulator for survival signal pathways such as PPAR-gamma and Akt stimulated by luteolin.

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

미토콘드리아 활성화를 통한 양파(Allium Cepa L.) 과육 및 과피의 Amyloid-β 유도성 인지손상에 대한 개선효과 (Ameliorative effect of onion (Allium Cepa L.) flesh and peel on amyloid-β-induced cognitive dysfunction via mitochondrial activation)

  • 박선경;이욱;강진용;김종민;신은진;허호진
    • 한국식품과학회지
    • /
    • 제52권3호
    • /
    • pp.263-273
    • /
    • 2020
  • 본 연구에서는 양파(Allium Cepa L.) 과육과 과피를 이용하여 in vitro 신경세포 보호효과 및 Aβ로 유도된 인지기능 장애 마우스 모델에서의 개선효과를 검증하고자 하였다. 양파 과육 분획물(EOF)과 과피 분획물(EOP) 모두 PC-12 세포에서 Aβ로 유도된 세포 독성에 대하여 신경세포 보호효과(세포 내 산화적 스트레스 억제, 세포 생존율 및 세포막 보호효과)를 나타냈다. Aβ로 유도된 인지장애 마우스 모델에서의 행동실험(Y-미로, 수동회피 및 Morris 수중 미로 시험) 결과 또한 양파 과육 분획물(EOF)과 과피 분획물(EOP) 모두 효과적인으로 학습 및 기억능력을 개선시키는 것으로 나타났다. 행동실험 후 마우스 뇌조직에서의 산화적 스트레스에 대한 생체 방어 기작의 일종인 SOD 함량의 증가, oxidized GSH/총 GSH 및 MDA 함량 감소를 나타냄에 따라 산화적 스트레스에 대한 우수한 항산화효과가 긍정적인 영향을 미친 것으로 판단된다. 또한, 뇌조직으로부터 분리한 미토콘드리아에 대하여 막 전위(MMP) 보호 및 ATP 함량 증가를 나타냈으며, 미토콘드리아와 관련된 apoptosis 경로에서 BAX의 감소 및 cytochrome c 방출 억제를 통해 caspase 3/7의 활성을 억제하는 것으로도 나타났다. 결국, 양파 과육 분획물(EOF)과 과피 분획물(EOP)은 AChE의 활성 억제 및 ACh의 함량을 증가시킴으로써 효과적인 콜린성 시스템 보호효과를 나타냄에 따라, Aβ로 유도된 인지기능 장애를 예방할 수 있는 고부가가치 건강기능식품 소재로의 활용 가능성이 기대된다.

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

Tanshinone IIA Protects Endothelial Cells from H2O2-Induced Injuries via PXR Activation

  • Zhu, Haiyan;Chen, Zhiwu;Ma, Zengchun;Tan, Hongling;Xiao, Chengrong;Tang, Xianglin;Zhang, Boli;Wang, Yuguang;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.599-608
    • /
    • 2017
  • Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide ($H_2O_2$) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to $400{\mu}M$ $H_2O_2$ for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of $H_2O_2$ in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against $H_2O_2$-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by $H_2O_2$ via PXR activation. In conclusion, Tan IIA protected HUVECs against $H_2O_2$-induced cell injury through PXR-dependent mechanisms.

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.

Developmental Potential of Interspecies Nuclear Transferred Embryos using Mouse Embryonic Fibroblast In Vitro

  • B.S.Koo;Yoon, J.I.;Son, H.Y.;Kim, M.G.;Park, C.H.;Lee, S.G.;Lee, Y.I.;Lee, C.K.
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.109-109
    • /
    • 2003
  • Even though success in birth of live offspring from nuclear transfer(NT) using somatic cells in many species, detailed information on processes or mechanisms of development are not well known. Cytoplasm of bovine oocyte has been known to support the development of nuclear transferred embryos using nuclear donor cells from different species. Therefore, interspecies NT might be used to find answers of some questions in basic aspect of nuclear transfer In this study, we examined the developmental potential of reconstructed embryos when bovine oocyte as a cytoplasm recipient and mouse embryonic fibroblast as a nuclear donor were used. The nuclear transfer units were aliocated in Group 1 (murine block media and normal media) and Group 2. (bovine block media and normal media). NT units were not blocked at 2-cell stage regardless of types of medium. On mouse media, poor development of interspecies NT units was observed compared to bovine media. However, as NT units cultured in bovine normal medium, embryos developed over 8-cell stage. Further studies performed to increase the developmental rate in condition of antioxidant treatment. Despite low development, bovine-murine interspecies nuclear transferred embryos could develop to blastocysts and they showed that blastocyts rate of antioxidant group was superior to those of non-antioxidant group. Next, we investigated gene expression pattern which is carried out for zygotic activation. The Xist gene is expressed in female mouse embryo after zygotic activation of 4-cell stage. But interspecies nuclear transferred embryos do not express Xist gene at 4-cell stage. As a result, it is suggested that the bovine cytoplasm controls the early preimplantation development in interspecies NT However, the development of later stages might require genomic control from transferred donor nucleus. Therefore, even though the involvement of several other factors such as mitochondrial incompatibility, effective development of embryos produced by interspecies NT requires proper genomic activation of donor nucleus after overcoming the cytoplasmic control of recipient oocytes.

  • PDF

Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과 (Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation)

  • 김예림;진효정;박상미;변성희;송창현;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권2호
    • /
    • pp.111-124
    • /
    • 2023
  • Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

소(牛) 심근 미토콘드리아의 ATPase와 porin의 분포 (The Distribution of ATPase and Porin in the Bovine Heart Mitochondrial Cristae)

  • 김태근;민병훈;김수진
    • Applied Microscopy
    • /
    • 제40권4호
    • /
    • pp.261-266
    • /
    • 2010
  • 미토콘드리아에서 생성하는 ATP는 미토콘드리아의 속막에 존재하는 전자전달계 효소(electron transferase)에 의해 생성되며, 이러한 전자전달계 효소는 복합체 I, II, III, IV, V로 구성되어 있다고 알려져 있다. ATP는 ATPase에 의해 생성되며, ATPase는 $F_0$$F_1$ 소복합체로 구성되어 있다. 미토콘드리아의 외막에는 Porin 또는 VDAC(voltage-dependent anion-selective channel)이라고 알려져 있는 미세한 구멍 형태의 단백질이 존재하며, 세포질에 존재하는 succinate, malate, ATP와 같은 음전하용질 또는 전자를 선택적으로 통과시키는 역할을 수행하는 것으로 보고된 바 있다. 본 연구에서는 소의 심근 미토콘드리아에 존재하고 있는 porin과 ATPase의 기능과 분포의 관계를 알아보기 위하여, porin과 ATPase Ⅴ-${\beta}$ 항체를 면역반응법을 이용한 광학현미경과 이중면역반응법을 이용한 형광현미경으로 확인하고, 심근 미토콘드리아의 두 단백질 분포를 면역황금표지법을 이용한 전자현미경으로 관찰하였다. 미토콘드리아에서 porin 항체에 대한 미토콘드리아 조직항원의 발색은 조직내에서 전반적으로 관찰할 수 있었으며, ATPase 항체에 대한 조직항원의 발색은 세로면에서 관찰되었다. 이중면역응법에서 porin 항체와 ATPase는 각각 다른 조직에서 발색이 관찰되거나, 같은 조직 내에서 관찰되었다. 면역황금표지법에서 porin 항체는 미토콘드리아의 바깥막에서 황금입자가 표지된 것을 확인할 수 있었으며, ATPase는 미토콘드리아의 속막에서 황금입자가 표지된 것을 확인할 수 있었다. 그러나 ATPase 항체가 황금입자로 표지되지 않은 미토콘드리아도 확인되었다. 이러한 결과로 porin 항체와 ATPase 항체는 미토콘드리아의 바깥막과 속막에 각각 분포양상을 확인하였다. porin 항체의 발색으로 인한 조직 내의 미토콘드리아가 존재하고 있음을 확인할 수 있었으며, ATPase 항체의 발색으로 인한 ATP를 생성하는 미토콘드리아를 확인할 수 있었다. 하지만 porin 항체의 반응으로 확인된 미토콘드리아가 반드시 ATP를 생성하는 것은 아니라는 것을 추측할 수 있었다.