• Title/Summary/Keyword: Mitochondria membrane potential

Search Result 163, Processing Time 0.036 seconds

Dihydroartemisinine Enhances Dictamnine-induced Apoptosis via a Caspase Dependent Pathway in Human Lung Adenocarcinoma A549 Cells

  • An, Fu-Fei;Liu, Yuan-Chong;Zhang, Wei-Wei;Liang, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5895-5900
    • /
    • 2013
  • Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.

Growth Inhibition and Apoptosis Induction of Trichosanthis Radix Extract on Human Uterine Cervical Carcinoma Cells (자궁경부암세포에 대한 천화분(天花粉)의 성장억제 및 세포사멸효과)

  • Lim, Eun-Mee;Lee, Hyun-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.3
    • /
    • pp.77-91
    • /
    • 2005
  • Purpose : Trichosanthis Radix is traditional medical herb which has been shown to inhibit tumor cell proliferation. In this study, the effects of Trichosanthis Radix extract were investigated on inducing growth inhibition and apoptosis of human uterine cervical carcinoma cells. Methods : Human uterine cervical carcinoma cells line, ME-180, was used for the study. The cells were treated with varying concentrations of Trichosanthis Radix extract. Cell growth and inhibitory rate were measured by MTT assay. Apoptosis induction was detected by fluorescence microscopy, DNA ladder formation and flow cytometry. Results : Trichosanthis Radix extract inhibited the growth of human uterine cervical carcinoma cells in a dose-dependent manner. It induced ME-180 cells to undergo apoptosis including fragmented nuclei and nucleosome-sized DNA fragmentation. Flow cytometric analysis showed the increasing rate of apoptotic cells by Trichosanthis Radix extract. Reduction of mitochondrial membrane potential and increase in caspase-3 activity and were found in ME-180 cells treated with Trichosanthis Radix extract. Conclusion : Our data suggest that Trichosanthis Radix extract inhibit the growth and proliferation of ME-180 cells by apoptotic induction and facilitates its activity via caspase-3 activation initiated by depolarization of mitochondria.

  • PDF

Effect of Different Infusion Frequency of Liquid Nitrogen on Actin Filament, Mitochondria, Apoptosis and Development in Mouse 2-Cell Embryo after Freezing and Thawing (생쥐 배아 동결시 액체질소의 분사속도가 해빙후 배아의 발달, 미세섬유, 미토콘드리아 및 세포자연사에 미치는 영향)

  • 손인표;안학준;계명찬;최규완;민철기;강희규;이호준;권혁찬
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.161-173
    • /
    • 2000
  • The aim of this study was to assess the effect of the frequency of the L$N_2$ infusion on the ultrastructure, metabolism and development of the embryo after freezing and thawing by computerized cell freezer. Two-cell embryos of ICR mouse were randomly allocated into fresh (control), high-frequency freezing (group 1) and low-frequency freezing (group 2). For fresh and frozen-thawed intact 2-cell embryos, total ceil number in the blastocyst was counted by fluorescent microscope after Hoechst 33258 staining. Relative amount of $H_2O$$_2$ was measured by DCHFDA. Intracellular location and membrane potential of the mitochondria were evaluated by staining with rhodamine 123 and JC-1. The structure of actin filament was also evaluated by confocal microscope. DNA fragmentation was assessed by TUNEL method after development into blastocyst. The survival rate of intact embryo was higher in group 1 than group 2 (50.7% vs. 34.6% respectively, p<0.05). The blastocyst developmental rate was significantly low in group 2 (86.7%, 76.7% vs. 44.0% for control, group 1 and group 2 respectively, p<0.05). Total cell number in the blastocyst was also significantly lower in group 2 than control (79.5$\pm$12.9, 71.6$\pm$8.0, and 62.5$\pm$4.7 for control, group 1 and group 2 respectively, p<0.05). The relative amount of $H_2O$$_2$ was higher in group 2 than other groups (15.3$\pm$3.0, 16.6$\pm$1.6 vs. 23.4$\pm$1.8, p<0.05). After JC-1 staining, relative intensity of mitochondria with high membrane potential was significantly lower in group 2 than control and group 1 (17.2$\pm$3.8, 17.4$\pm$1.3 vs. 13.2$\pm$2.0, p<0.05). In group 2, partial deletion and aggregation of the actin filament was found. DNA fragmentation rate was also hieher for group 2 versus other groups (30.8%, 36.0% vs. 65.6%, p<0.05). The frequency of the L$N_2$ infusion is an important factor for the development of frozen-thawed mouse embryo. High-frequency infusion may prevent damages of cytoskeleton and mitochondria in the embryo probably by preventing the temperature fluctuation during dehydration phase. We speculate that the application of high-frequency infusion method in human embryo may be promising.

  • PDF

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.

Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy

  • Lee, Seunghee;Lee, Sangguk;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.354-359
    • /
    • 2022
  • MitoNEET, a mitochondrial outer membrane protein containing the Asn-Glu-Glu-Thr (NEET) sequence, controls the formation of intermitochondrial junctions and confers autophagy resistance. Moreover, mitoNEET as a mitochondrial substrate undergoes ubiquitination by activated Parkin during the initiation of mitophagy. Therefore, mitoNEET is linked to the regulation of autophagy and mitophagy. Mitophagy is the selective removal of the damaged or unnecessary mitochondria, which is crucial to sustaining mitochondrial quality control. In numerous human diseases, the accumulation of damaged mitochondria by impaired mitophagy has been observed. However, the therapeutic strategy targeting of mitoNEET as a mitophagy-enhancing mediator requires further research. Herein, we confirmed that mitophagy is indeed activated by mitoNEET inhibition. CCCP (carbonyl cyanide m-chlorophenyl hydrazone), which leads to mitochondrial depolarization, induces mitochondrial dysfunction and superoxide production. This, in turn, contributes to the induction of mitophagy; mitoNEET protein levels were initially increased before an increase in LC3-II protein following CCCP treatment. Pharmacological inhibition of mitoNEET using mitoNEET Ligand-1 (NL-1) promoted accumulation of Pink1 and Parkin, which are mitophagy-associated proteins, and activation of mitochondria-lysosome crosstalk, in comparison to CCCP alone. Inhibition of mitoNEET using NL-1, or mitoNEET shRNA transfected into RAW264.7 cells, abrogated CCCP-induced ROS and mitochondrial cell death; additionally, it activated the expression of PGC-1α and SOD2, regulators of oxidative metabolism. In particular, the increase in PGC-1α, which is a major regulator of mitochondrial biogenesis, promotes mitochondrial quality control. These results indicated that mitoNEET is a potential therapeutic target in numerous human diseases to enhance mitophagy and protect cells by maintaining a network of healthy mitochondria.

Antioxidant Activity and Protective Effects of Extracts from Sambucus williamsii var. coreana on t-BHP Induced Oxidative Stress in Chang cells (접골목 추출물에 의한 항산화 활성이 정상 간세포의 t-BHP 유발 산화스트레스에 미치는 영향)

  • Kim, Kitae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.17 no.3
    • /
    • pp.275-286
    • /
    • 2013
  • In the present study, antioxidant activity and protective effect of extracts from Sambucus williamsii var. coreana stems (SWC) were evaluated on tert-butyl hydroperoxide (t-BHP) induced oxidative stress in human liver (Chang) cells. Antioxidant activities of the SWC extracts were determined by various radical scavenging activities, such as DPPH, ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethybenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC) assay. SWC extracts showed strong antioxidant effect on various assay. To determine the hepatoprotective effects of SWC on t-BHP induced oxidative damage, cell viability was measured using MTT assay. Pretreatment of SWC extracts showed increasing cell viability, decreasing ROS and restoring mitochondria membrane potential on t-BHP induced oxidative stress in Chang cells. Our findings suggest that SWC extracts may be considered a potential agent for therapeutic protective effect from oxidative stress through its antioxidant activity.

Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young;Park, Jong-Hwa;Paik, Hyun-Dong;Nah, Seung-Yeol;Kim, Darrick S.H.L.;Han, Ye Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential

  • Yang, Shasha;Li, Xiangdan;Dou, Haowen;Hu, Yulai;Che, Chengri;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.223-232
    • /
    • 2020
  • Sesamin, a lipid-soluble lignin originally isolated from sesame seeds, which induces cancer cell apoptosis and autophagy. In the present study, has been reported that sesamin induces apoptosis via several pathways in human lung cancer cells. However, whether mitophagy is involved in sesamin induced lung cancer cell apotosis remains unclear. This study, the anticancer activity of sesamin in lung cancer was studied by reactive oxygen species (ROS) and mitophagy. A549 cells were treated with sesamin, and cell viability, migration ability, and cell cycle were assessed using the CCK8 assay, scratch-wound test, and flow cytometry, respectively. ROS levels, mitochondrial membrane potential, and apoptosis were examined by flow cytometric detection of DCFH-DA fluorescence and by using JC-1 and TUNEL assays. The results indicated that sesamin treatment inhibited the cell viability and migration ability of A549 cells and induced G0/G1 phase arrest. Furthermore, sesamin induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspase-3 and cleaved caspase-9. Additionally, sesamin triggered mitophagy and increased the expression of PINK1 and translocation of Parkin from the cytoplasm to the mitochondria. However, the antioxidant N-acetyl-L-cysteine clearly reduced the oxidative stress and mitophagy induced by sesamin. Furthermore, we found that cyclosporine A (an inhibitor of mitophagy) decreased the inhibitory effect of sesamin on A549 cell viability. Collectively, our data indicate that sesamin exerts lethal effects on lung cancer cells through the induction of ROS-mediated mitophagy and mitochondrial apoptosis.

Glycosylation modification of human prion protein provokes apoptosis in HeLa cells in vitro

  • Yang, Yang;Chen, Lan;Pan, Hua-Zhen;Kou, Yi;Xu, Cai-Min
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • We investigate the correlation between the glycosylation modified prion proteins and apoptosis. The wild-type PRNP gene and four PRNP gene glycosylated mutants were transiently expressed in HeLa cells. The effect of apoptosis induced by PrP mutants was confirmed by MTT assay, Hochest staining, Annexin-V staining and PI staining. ROS test detected ROS generation within the cells. The mitochondrial membrane potential was analyzed by the flow cytometry. The expression levels of Bcl-xL, Bax, cleaved Caspase-9 proteins were analyzed by Western Blot. The results indicated that the expressed non-glycosylated PrP in HeLa cells obviously induced apoptosis, inhibited the growth of cells and reduced the mitochondrial membrane potential, and more ROS generation and low levels of the apoptosis-related proteins Bcl-xL, the activated the cleaved Caspase-9 proteins were found. The apoptosis induced by non-glycosylated PrP demonstrates that its underlying mechanism correlates with the mitochondria-mediated signal transduction pathway.

Diethylnitrosamine Induced Tissue Damage and Change of Lipid Components in the Chick Embryo Liver (Diethylnitrosamine에 의한 계배 간 조직 손상 및 지질 성분의 변화)

  • 박정현;강성조;강진순;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • Diethylnitrosamine (DEN) is known as a potential hepatic carcinogen by single administration. This study was designed to measure the effects of DEN-induced cell damage on the triglyceride and cholesterol concentration in the liver, excluding dietary effects. Fertilized chicken eggs, 10 days before hatching, were randomly divided into three groups (n=20) and each egg was injected 10 ${mu}ell$ of corn oil (vehicle control), 5 $\mu\textrm{g}$ of DEN/10 ${mu}ell$ of DEN/10 ${mu}ell$ into yolk via air sac. After 48 hr and 96 hr incubation, the damage of the chick-embryo liver cell was investigated by electron microscopy and by measuring the concentration of lipid components (total cholesterol, free cholesterol, phospholipid and triglyceride). For eggs administered 10 $\mu\textrm{g}$ of DEN and incuvated 96 hr, in hepatocyte, the nucleus membrane was roughed, the size of nucleolus was apparently increased and euchromatin was accumulated. Mitochondria were condensed and cristae, located mitochondiral inner membrane, were obscured. Additionally, the leaves of triglyceride and cholesterol classes were significantly increased depend on the amount treated with 10 $\mu\textrm{g}$ DEN at 96 hr, but phospholipids component of cell membrane, were decreased with significance. As a conclusion, carcinogen induced hepatic lesion was correlated with the changes in lipid component of liver.

  • PDF