• Title/Summary/Keyword: Mitf

Search Result 196, Processing Time 0.037 seconds

The Suppression Effects of Fat Mass and Obesity Associated Gene on the Hair Follicle-Derived Neural Crest Stem Cells Differentiating into Melanocyte by N6-Methyladenosine Modifying Microphthalmia-Associated Transcription Factor

  • Zhiwei Shang;Haixia Feng;Liye Xia
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Background and Objectives: Melanocyte (MC), derived from neural crest stem cell (NCSC), are involved in the production of melanin. The mechanism by which NCSC differentiates to MC remains unclear. N6-methyladenosine (m6A) modification was applied to discuss the potential mechanism. Methods and Results: NCSCs were isolated from hair follicles of rats, and were obtained for differentiation. Cell viability, tyrosinase secretion and activity, and transcription factors were combined to evaluated the MC differentiation. RT-qPCR was applied to determine mRNA levels, and western blot were used for protein expression detection. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RNA immunoprecipitation was used to access the protein binding relationship. In current work, NCSCs were successfully differentiated into MCs. Fat mass and obesity associated gene (FTO) was aberrant downregulated in MCs, and elevated FTO suppressed the differentiation progress of NCSCs into MCs. Furthermore, microphthalmia-associated transcription factor (Mitf), a key gene involved in MC synthesis, was enriched by FTO in a m6A modification manner and degraded by FTO. Meanwhile, the suppression functions of FTO in the differentiation of NCSCs into MCs were reversed by elevated Mitf. Conclusions: In short, FTO suppressed the differentiating ability of hair follicle-derived NCSCs into MCs by m6A modifying Mitf.

Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression (무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성)

  • Min Ji Kim;Si Eun Park;Geun soo Lee;Jin Hwa Kim;Sunwoo Kwon;Hyung Seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.204-212
    • /
    • 2023
  • Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.

Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase

  • Lee, Hyun-E;Kim, Eun-Hyun;Choi, Hye-Ryung;Sohn, Uy-Dong;Yun, Hye-Young;Baek, Kwang-Jin;Kwon, Nyoun-Soo;Park, Kyoung-Chan;Kim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.287-291
    • /
    • 2012
  • This study investigated the effects of proline-serine (PS) and valine-serine (VS) dipeptides on melanogenesis in Mel-Ab cells. Proline-serine and VS significantly inhibited melanin synthesis in a concentration-dependent manner, though neither dipeptide directly inhibited tyrosinase activity in a cell-free system. Both PS and VS down-regulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. In a follow-up study also described here, the effects of these dipeptides on melanogenesis-related signal transduction were quantified. Specifically, PS and VS induced ERK phosphorylation, though they had no effect on phosphorylation of the cAMP response element binding protein (CREB). These data suggest that PS and VS inhibit melanogenesis through ERK phosphorylation and subsequent down-regulation of MITF and tyrosinase. Properties of these dipeptides are compatible with application as skin-whitening agents.

Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells (α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구)

  • Hong, Sung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

A Study on the Melanin Synthesis Inhibition and Whitening Effect of Bombysis Corpus (백강잠의 멜라닌 생성 억제와 미백효과에 관한 연구)

  • Oh, Han-Cheol;Lim, Kyu-Sang;Hwang, Chung-Yeon;Youn, In-Hwan;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • Objective : This study was performed to assess the whitening effect of Bombysis Corpus on melanin synthesis. Methods : The whitening effects of Bombysis Corpus were examined by in vitro melanin production assay. We assessed inhibitory effects of Bombysis Corpus on melanin-release from B16F10, on melanin production in B16F10, on mushroom tyrosinase activity in vitro, on tyrosinase activity in B16F10, effect of Bombysis Corpus on the expression tyrosinase, TRP-1, PKA, ERK-1 ERK-2, AKT-1, MITF in B16F10. Results : 1. Bombysis Corpus inhibited melanin-release, melanin production in B16F10. 2. Bombysis Corpus inhibited tyrosinase activity in vitro and in B16F10. 3. Bombysis Corpus suppressed the expression of tyrosinase, TRP-1 in B16F10. 4. Bombysis Corpus suppressed the expression of PKA in B16F10. 5. Bombysis Corpus suppressed the expression of ERK-1, ERK-2, AKT-1 in B16F10. 6. Bombysis Corpus suppressed the expression of MITF in B16F10. Conclusion : The study shows that Bombysis Corpus inhibited melanin production on the melanogenesis.

  • PDF

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk;Chung, You Chul;Moon, Seung-Hyun;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.323-331
    • /
    • 2021
  • Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Identification of SNP(Single Nucleotide Polymorphism) from MC1R, MITF and TYRP1 associated with Feather Color in Chicken (닭의 모색 연관 유전자인 MC1R, MITF, TYRP1의 SNP(Single Nucleotide Polymorphism) 규명)

  • Kim, Byung Ki;Byun, Youn-Hwa;Ha, Jea Jung;Jung, Daejin;Lee, Yoon-Seok;Hyeong, Ki-Eun;Yeo, Jung-Sou;Oh, Dong-Yep
    • Korean Journal of Poultry Science
    • /
    • v.41 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • The Feather Color of chicken is considered as most obvious, and the purpose of this study is to identify the genotype following the SNP of MC1R, MITF and TYRP1, which are genes related to Feather Color, and develop a SNP marker that can be classified per breed. When a haplotype is observed through the combination of markers, a Korean Native Chicken can especially be distinguished when it is a CGG type in the SNP combination of the MC1R gene. In case of the TAG, TGG and TAA types, only Araucana was identified, and for the CAA type, Leghorn could specifically be distinguished. In the SNP combination of TYRP1 gene, only Leghorn was differentiated in case of the TTTCA and CCTCA types, and only Silky Fowl was identified in case of the CTTTA type. The SNP combination of MC1R gene enabled for Korean Native Chicken, Leghorn, and Araucana to be distinguished and each of the SNP and combination of TYRP1 gene allowed for all 4 breeds to be classified. If many researches are conducted about genetic polymorphism between breeds, then it is considered that the differences between breeds will be understood from a molecular biological aspect instead of simply distinguishing the breeds through Feather Color.

Antimelanogenic Effect of Purpurogallin in Murine Melanoma Cells (마우스 흑색종세포에서 Purpurogallin의 멜라닌 생성 억제 효과)

  • Kim, Han-Hyuk;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1905-1911
    • /
    • 2015
  • Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2. Convenient enzymatic transformation of the simple phenol pyrogallol with polyphenol oxidase originating from pear to an oxidative product, purpurogallin, was efficient. The structure of the pyrogallol oxidation product was identified on the basis of spectroscopic methods. The biotransformation product purpurogallin showed significant inhibitory effects against both melanin synthesis and tyrosinase activity in a dose-dependent manner in B16 melanoma cells. In addition, purpurogallin significantly attenuated melanin production by inhibiting TRP-1, and TRP-2 expression through modulation of their corresponding transcription factors, and microphthalamia- associated transcription factor in B16 cells. Consequently, purpurogallin derived from convenient enzymatic transformation of pyrogallol might be a beneficial material for reducing skin hyperpigmentation.

Studies of Inhibitory Mechanism on Melanogenesis by Partially Purified Asiasari radix in α-MSH Stimulated B16F10 Melanoma Cells (세신추출물이 α-MSH 자극에 의한 B16F10 세포의 멜라닌생성에 미치는 영향)

  • Jang, Ji-Yeon;Kim, Ha-Neui;Kim, Yu-Ri;Kim, Byung-Woo;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1617-1624
    • /
    • 2010
  • Recently, it has been found that Asiasari radix showed a hypopigmenting effect on melanogenesis through activation of mitogen-activated protein kinase (MEK)/extracellular signal-activated kinase (ERK) in B16F10 melanoma cells. However, the hypopigmenting effect of A. radix on the $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH)-stimulated melanogenesis has remained unknown. The purpose of this study was to investigate the inhibitory mechanism of the partially purified A. radix (PPAR)-induced hypopigmentating effects on $\alpha$-MSH-stimulated melanogenesis in B16F10 mouse melanoma cells. PPAR strongly inhibited tyrosinase activity and leads to decreased melanin synthesis in $\alpha$-MSH-stimulated B16F10 melanoma cells. PPAR also decreased the $\alpha$-MSH-induced over-expression of the melanogenic enzymes, tyrosinase, tyrosinase-related protein (TRP)-1, dopachrome tautomerase (Dct) and microphthalmia-associated transcription factor (MITF). We further showed that PPAR inhibits $\alpha$-MSH-induced melanogenesis via phosphorylation of MEK/ERK and PI3K/Akt, and that their activation was blocked by MEK inhibitors, PD98059 and PI3K inhibitors, LY294002 in $\alpha$-MSH-stimulated B16F10 melanoma cells. These results suggest that PPAR inhibits $\alpha$-MSH-induced melanogenesis by activation of MEK/ERK and PI3K/Akt through MITF degradation, which may lead to down-regulation of tyrosinase.