• Title/Summary/Keyword: Mist Cutting

Search Result 37, Processing Time 0.024 seconds

The effects of cutting parameters on the characteristics of mist generation in turning (선삭시 미스트 발생특성에 미치는 절삭변수의 영향)

  • Oh, Myung-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • The presence of cutting fluid for cutting tool and workpiece leads a temperature decrease, and reduces tool wear and residual stress. Moreover, it disposes chips from cutting area, and reduces thermal distortion. However, in manufacturing, cutting fluid used in cutting process is undesirable for both human and environmental aspect. Also, it's not economic for cutting cost. This paper studied experimentally the effects of cutting parameters on the characteristics of mist generation in turning. The results of experiment are as follows: 1) The more severe cutting conditions the more mist generate, 2) The ratio of weight concentrations of cutting fluid nearly have no an effect on the amounts of mist generation 3) The size of SMD is not affected by cutting parameters.

  • PDF

Fundamental Design of Cyclone Collector for Oil Mist (오일미스트용 사이클론 집진기에 관한 기초 설계 -오일미스트 및 슬러지 입자 융합연구-)

  • Jang, Sung-Cheol;Ahn, Hwi-Woong;Lee, Chan-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.223-227
    • /
    • 2013
  • Dust collecting performance of cyclone collector for oil mist was alalyzed in the study. The purposes of using cutting fluid during cutting have been colling, lubricating, chip washing and anti-corroding. However, the present manufactaring industry restricts the use of cutting fluid because cutting fluid confains poisonous substances which are harmful to the human body. Also, the optimum design oil-mist collector. The new oil mist collector was designed. In the near future, this device must be tested in the real machining center and CNC machine. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. The model(A, B Type cyclone) of the set of fixture and alveolus are made by using a CAE software. Finally, we have obtained a model A Type solution by using orthogonal array. Therefore, it could be confirmed that as the model-A was increased and model-B was decreased, cut diameter was decreased.

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

Exposures to Oil Mist by Metal Machining Shop Workers and Analysis of Some Oils (일부 절삭유 제조 및 취급 사업장의 오일 미스트의 노출농도 및 성분에 관한 연구)

  • 정동인;변상훈;박승현;오세민;문영한
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.121-127
    • /
    • 1998
  • This study investigated exposures to oil mist obtained from an cutting oil manufacture shop and 5 machining shops and also analysis of some oils. The results were that geometric average concentrations of oil mist were $0.29 mg/m^3$, which was less than current $TLV(5mg/m^3$) in Korea. The proper case of either type of system will ensure that atmospheric concentrations of oil mist in machine shops will be within the TLV. It should be remembered, however, that this TLV was established before there was any suggestion that in the inhalable of oil mist might rarely be carcinogenic, and so it seems prudent to keep atmospheric content as low as possible. The analysis of insoluble cutting oils with GC-MSD showed that considerable suspected PAHs were contained. But soluble cutting oil(KSM-W2) didn't almost contain PAHs.

  • PDF

Mist Formation Characteristics in Turning (선삭 가공시의 미스트 발생 특성)

  • 오명석;고태조;박성호;김희술;정종운
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.147-152
    • /
    • 2002
  • The mechanism of the aerosol(mist) generation generally consists of spin-off, splash, and evaporation/condensation. Host researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the flow direction of the cutting fluid and generate the heat by the relative motion of between tool and workpicee, and so the mass loading of the mist is greatly increased as compared with non-cutting. In this paper, we show some experimental data that the mist formation characteristics of cutting is different from that of non-cutting.

  • PDF

Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill (미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가)

  • 배정철;정연행;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

Effect of Cooling Method on Surface Roughness in Turning (선삭가공에서 표면 거칠기에 미치는 냉각방법의 영향)

  • Kim, Yeong-Duck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.87-93
    • /
    • 2011
  • CNC lathe machining has been widely used for parts machining of vehicles, aircraft, ships, electronics, etc. because cost savings for shortening processing time and increasing productivity are great. In this study, the purpose is to investigate the effect of cooling methods such as oil mist, water-soluble cutting oils on the workpiece surface roughness with the cutting speed, cutting depth, tool nose radius and feed rate of CNC lathe machine as a parameter in the cutting process of the aluminum alloy 2024 which is used a lot recently on aircraft parts. It is found that oil mist is coolant and water-soluble cooled by cutting the experimental conditions, cutting speed and cutting depth without effecting the surface roughness value was constant.

Monitoring of Dry Cutting and Applications of Cutting Fluid for Ball End Milling

  • Tangjitsitcharoen, Somkiat;Rungruang, Channarong;Laiaddee, Duangta
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • For economical and environmental reasons, the aim of this research is hence to monitor the cutting conditions with the dry cutting, the wet cutting, and the mist cutting to obtain the proper cutting condition for the plain carbon steel with the ball end milling based on the consideration of the surface roughness of the machined parts, the life of the cutting tools, the use of the cutting fluids, the density of the particles of cutting fluids dispersed in the working area, and the cost of cutting. The experimentally obtained results of the relation between tool wear and surface roughness, the relation between tool wear and cutting force, and the relation between cutting force and surface roughness are correspondent with the same trend. The phenomena of surface roughness and tool wear can be explained by the in-process cutting forces. The models of the tool wear with the cutting conditions and the cutting times are proposed to estimate the tool cost for the different cooling strategies based on the experimental data using the multiple regression technique. The cutting cost is calculated from the costs of cutting tool and cutting fluid. The mist cutting gives the lowest cutting cost as compared to others. The experimentally obtained proper cutting condition is determined based on the experimental results referring to the criteria.

Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill (소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가)

  • 정연행;이태문;강명창;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature (Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화)

  • Oh, Chang-hyouk;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.