• Title/Summary/Keyword: Mission software

Search Result 267, Processing Time 0.025 seconds

A Network QoS Model for Joint Integrated C4I Structure (합동지휘통제 통합망 구조 QoS 모델(안))

  • Park, Dongsuk;Oh, Donghan;Choi, Eunho;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 2020
  • NCW which is shaping favorable conditions with obtaining initiative through superiority in C2 and information sharing is critical to the result of the war in a modern warfare. An important requirement to attain superiority through an effective networking in a war-environment is to apply QoS to ensure priority in supporting critical mission and services. In order to obtain an effective NCOE through JCS-led QoS support, standard doucments have been reviewed and analyzed to understand the current level of technology and development. In addition, QoS-related policy documents which is currently being applied by the ROK armed forces have been analyzed to substantiated the JCS-led QoS model and propose the directions of development and enhancement required in the realm of technology, policy and system.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

A development of GEO satellite ground control softwares

  • Lee, H.J.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.38-43
    • /
    • 1994
  • To provide more instructive and a safer ground control operation environments for satellite operators, and subsequently to implement a better look-and-feel user interface and a structural mechanism to enhance the efficiency of control and monitoring facilities, we have developed a prototype(laboratory model) ground control softwares targeting for the first generation KOREASAT scheduled to be launched in 1995. As far as the functionality is concerned, the developed system is covering almost all the mission phase operational functions except for some functions like antenna tracking control that are necessary for real operation environments. Most of the functions of the system is realized in softwares but some hardwares needed for TM/TC RF communications are also included in it. The system is now being integrated and under the system test. The performance and functionality is to be evaluated by the end of this year by using the satellite software simulator. Next year, this system could be configured to be used as a workbench for a online/off-line analysis of the operating KOREASAT satellites.

  • PDF

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

An XML-based Comment Management System for C Source Code (XML에 기반을 둔 C 원시 코드의 주석 관리 시스템)

  • Park, Geun-Ok;Lim, Jong-Tae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.799-808
    • /
    • 2004
  • Well documented, simplified and clarified source code is required for the mission critical application software area in which C programing language is generally used. We suggest an XML_based comment management system for C source code. The comment management system is composed of 6 modules including comment user module, reviewer module, comment extraction module, comment traceability link module, comment tag definition module and storage management module. The XML comment tags defined in this paper cover categories of the development process activities applying the IEEE standard 1028 and IEEE standard 1012. The XML Schema Is used to insert comments into C source code and to extract XML tags from C source code and the XSL-FO is used fur the visual display professing o( comment extraction results.

Development of DIagnostic Coronagraph Experiment (DICE) for Total Solar Eclipse

  • Choi, Seonghwan;Kim, Jihun;Park, Jongyeob;Jang, Biho;Bong, Suchan;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.3-66.3
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) is developing a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) which will be installed on the International Space Station (ISS). The coronagraph can measure speed and temperature by using four filters approximately 400 nm and polarization filter in three different angles, differently with older coronagraphs. For the successful mission, it has development and experiment progress in three phases; total solar eclipse experiment in 2017, balloon experiment in 2019, and the ISS installation in 2021. As a first experiment, we developed a coronagraph without an occulter named with Diagnostic Coronagraph Experiment (DICE) for experiment for filter system and imaging sensor. We designed optics with a field of view from 2.5 to 15 solar radii. It has four filters approximately 400 nm and polarizer to measure speed and velocity of the solar corona. For the selection of filter or polarization angle, it has two mechanism parts; filter wheel assembly and a polarizer wheel assembly. Especially we used Core Flight System (CFS) platform which was developed by NASA, when we develop the coronagraph operation software. It provides us stability, reusability, and compatibility.

  • PDF

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

A Reactive Routing Scheme based on the Prediction of Link State for Communication between UAV Squadrons in a Large-Scale FANET (대규모 FANET에서 UAV 편대간 통신을 위한 링크 상태 예측에 기반한 반응적 라우팅 기법)

  • Hwang, Heedoo;Kwon, Oh Jun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.593-605
    • /
    • 2017
  • In applications which are covered wide range, it is possible that one or more number of Unmanned Aerial Vehicle(UAV) squadrons are used to perform a mission. In this case, it is most important to communicate seamlessly between the UAV squadrons. In this paper, we applied the modified OLSR(OSLR-Pds) which can prediction for state of the link for the communication in UAV squadron, and applied the modified AOMDV which can build multi-path for the communication between UAV Squadrons. The mobility of nodes are modeled using Gauss-Markov algorithm, and relative speed between nodes were calculated by derive equation of movement, and thereby we can predict link state for in a squadron and between squadrons. An experiment for comparing AODV, AOMDV and the proposed routing protocol was conducted by three factors such as packet delivery ratio, end to end delay, and routing overhead. In experiment result, we make sure that the proposed protocol performance are superior in these three factors. However, if the density of the nodes constituting FANET are too low, and if the moving speed of node is very slow, there is no difference to others protocols.

Development of a GUI Program for the Position Prediction of Distressed Vessel (조난 선박의 위치추정을 위한 GUI 프로그램 개발)

  • 강신영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • To provide an easy operation of drift prediction model in SAR(search and rescue) mission a GUI program running on Window environment has developed. Users can make choice of input data on the screen by just clicking the mouse and the prediction results of datum points and trajectories of vessels are drawn on the map. The program contains both Leeway Equation model and mathematical model. The FORTRAN language was used in programming and Lehay Winteracter 4.0 software was utilized for graphic presentation. The result of May, 2001 Busan field experiment was plotted with that of model prediction for demonstration purpose.

  • PDF

Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

  • Kim, Young-Rok;Park, Eunseo;Kucharski, Daniel;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.189-200
    • /
    • 2015
  • In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.