• Title/Summary/Keyword: Mission software

Search Result 265, Processing Time 0.028 seconds

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

A Series of Process of Electrical Integration and Function Test for Flight Model of STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행모델의 전자조립 및 기능시험 과정)

  • Jeong, Hyeon-Mo;Chae, Bong-Geon;Han, Sang-Hyuck;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.814-824
    • /
    • 2016
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to find space core technologies researched at domestic industry or university and to verify these technologies on mission orbit. To implement this objective, system level electrical integration and function test (EIT) by using developed flight software were performed in compliance with system requirements. And the effectiveness of the flight model (FM) was verified through launch and thermal vacuum test at acceptance level. This paper will introduce a series of process of electrical function tests for FM EIT, launch and thermal vacuum tests.

Design of a Virtual Machine based on the Lua interpreter for the On-Board Control Procedure Execution Environment (탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계)

  • Kang, Sooyeon;Koo, Cheolhea;Ju, Gwanghyeok;Park, Sihyeong;Kim, Hyungshin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI) autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes. In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE. We present experimental results on a range of additional hardware configurations such as usages of cache and floating point unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.

Towards the development of an accurate DEM generation system from KOMPSAT-1 Electro-Optical Camera Data (다목적 실용위성 1호기 EOC카메라 영상으로부터 DEM 추출을 위한 시스템개발에 관한 고찰)

  • Taejung Kim;Heung Kyu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.232-249
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 scale cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated digital elevation model (DEM) generation from EOC data and identifies some important aspects in developing a DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work will be described in three pares of sensor modelling, stereo matching and DEM interpolation. The performance of the system is shown with a SPOT stereo pair. A DEM generated from commercial software is also presented for comparison. The proposed system seems to generate promising results.

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

KOREAN MARS MISSION DESIGN USING KSLV-III (KSLV-III를 이용한 한국형 화성 탐사 임무의 설계)

  • Song, Young-Joo;Yoo, Sung-Moon;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.355-372
    • /
    • 2006
  • Mission opportunities and trajectory characteristics for the future Korean Mars mission have designed and analyzed using KSIV-III(Korea Space Launch Vehicle-III). Korea's first space center, 'NARO space center' is selected as a launch site. For launch opportunities, year 2033 is investigated under considering the date of space center's completion with KSLV series development status. Optimal magnitude of various maneuvers, Trans Mars Injection (TMI) maneuver, Trajectory Correction Maneuver (TCM), Mars Orbit Insertion (MOI) maneuver and Orbit Trim Maneuver(OTM), which are required during the every Mars mission phases are computed with the formulation of nonlinear optimization problems using NPSOL software. Finally, mass budgets for upper stage (launcher for KSIV-III and spacecraft are derived using various optimized maneuver magnitudes. For results, daily launch window from NARO space center for successful Korean Mars mission is avaliable for next 27 minutes starting from Apr. 16. 2033. 12:17:26 (UTC). Maximum spacecraft gross mass which can delivered to Mars is about 206kg, with propellant mass of 109kg and structure mass of 97kg, when on board spacecraft thruster's Isp is assumed to have 290 sec. For upper stage, having structure ratio of 0.15 and Isp value of 280 sec, gross mass is about 1293kg with propellant mass of 1099kg and structure mass of 194kg. However, including 10% margins to computed optimal maneuver values, spacecraft gross mass is reduced to about 148kg with upper stage's mass of 1352kg. This work will give various insights, requiring performances to developing of KSIV-III and spacecraft design for future Korean Mars missions.

A Study on Automatic Precision Landing for Small UAV's Industrial Application (소형 UAV의 산업 응용을 위한 자동 정밀 착륙에 관한 연구)

  • Kim, Jong-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.27-36
    • /
    • 2017
  • In almost industries, such as the logistics industry, marine fisheries, agriculture, industry, and services, small unmanned aerial vehicles are used for aerial photographing or closing flight in areas where human access is difficult or CCTV is not installed. Also, based on the information of small unmanned aerial photographing, application research is actively carried out to efficiently perform surveillance, control, or management. In order to carry out tasks in a mission-based manner in which the set tasks are assigned and the tasks are automatically performed, the small unmanned aerial vehicles must not only fly steadily but also be able to charge the energy periodically, In addition, the unmanned aircraft need to land automatically and precisely at certain points after the end of the mission. In order to accomplish this, an automatic precision landing method that leads landing by continuously detecting and recognizing a marker located at a landing point from a video shot of a small UAV is required. In this paper, it is shown that accurate and stable automatic landing is possible even if simple template matching technique is applied without using various recognition methods that require high specification in using low cost general purpose small unmanned aerial vehicle. Through simulation and actual experiments, the results show that the proposed method will be made good use of industrial fields.

Analysis of landing mission phases for robotic exploration on phobos mar's moon

  • Stio, A.;Spinolo, P.;Carrera, E.;Augello, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • Landing phase is one of the crucial and most important phases during robotic aerospace explorations. It concerns the impact of the landing module of a spacecraft on a celestial body. Risks and uncertainties of landing are mainly due to the morphology of the surface, the possible presence of rocks and other obstacles or subsidence. The present work quotes results of a computational analysis direct to investigate the stability during the landing phase of a lander on Phobos, a Mars Moon. The present study makes use of available software tools for the simulation analyses and results processing. Due to the nature of the system under consideration (i.e., large displacements and interaction between several systems), multibody simulations were performed to analyze the lander's behavior after the impact with the celestial body. The landing scenario was chosen as a result of a DOE (Design of Experiments) analysis in terms of lander velocity and position, or ground slope. In order to verify the reliability of the present multibody methodology for this particular aerospace issue, two different software tools were employed in order to emphasize two different ways to simulate the crash-box, a particular component of the system used to cushion the impact. The results show the most important frames of the simulations so as to provide a general idea about how lander behaves in its descent and some trends of the main characteristics of the system. In conclusion, the success of the approach is demonstrated by highlighting that the results (crash-box shortening trend and lander's kinetic energy) are comparable between the two tools and that the stability is ensured.

How to use Business Simulation Game for Business Education: Based on the Development Process and Business Education Method (경영 교육을 위한 경영 모의 게임의 활용 방안: 개발 과정 및 교육 방법을 중심으로)

  • Kim, Sang-Soo
    • Information Systems Review
    • /
    • v.7 no.1
    • /
    • pp.41-63
    • /
    • 2005
  • Due to the fast development of information technology, a variety of edutainment software has been used in the field of business education. One of them is Business Simulation Game that the business game domain and the information technology is definitely associated. A lot of business simulation game have been developed and used for many courses of colleges and corporate training in USA and EU. However, education program based on business simulation game has not been activated in Korea. This paper introduce a business simulation game developed by joint effort of business professors and a software firm for last three years and suggest the method of business education using this business simulation game. First of all, the development process, architecture and procedure of business simulation game are summarized. From a perspective of business education, the effect and advantage of business simulation game, sample syllabus, course outlines, users, missions and evaluation method are also addressed.