• Title/Summary/Keyword: Mission Time

Search Result 737, Processing Time 0.027 seconds

The Study on analysis methodology of optimal performance and quantity for Mission-Based drones (임무 기반 드론의 최적성능 및 소요량 분석 방법론 연구)

  • Ha, Young-Seok
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.231-236
    • /
    • 2020
  • This paper addresses the analysis method about optimal performance and required quantity for Mission-Based drones. In the case of drones, although scientific verification of operational performance and quantity of demanded, such as total flight time, total operation time, and appropriate required quantity, is required depending on the operation concept, there is no methodology for analyzing them systematically. That is the reason this research was carried out. Through the suggestion and study about Mission-Based six step analysis method and, this study can present the optimal ROC (Required Operational Capability) and the required quantity based on the operational concept of drones, and technical and economic effects were suggested.

A Research of Applying RAM-c to Analyze the Design Service Life for Unmanned Aerial Vehicle (무인항공기의 설계사용 수명판단을 위한 RAM-c 적용 연구)

  • Choi, Cheong Ho;Bang, Jang Kyu;Park, Sung Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.117-124
    • /
    • 2015
  • RAM (Reliability, Availability and Maintenance) has been applied to design and analysis tools which affects system's operational sustainability and its life cycle cost as RAM-c(2009 DoD). RAM-c plays also an important role to guarantee the system engineering for mission assurance. Reliability is highly related to the probability of system failure. Availability means mission capability or the condition of ready to mission. Maintenance includes both the repair to recover the system in the event of failure/unexpected breakdown and proactive maintenance to prolong the design service life of the system or machinery. It is the purpose that this paper is to analyze and conclude the objective service life of UAV. The more UAV is operated, the less the level of its reliability becomes. Repairing failures and supplying spare parts on time, system reliability could be improved up until the time over target. Applying statistical Weibull distributions, this paper suggests the analysis of the design service life and economic life of UAV based on RAM-c with operational data.

Analysis on Mission and Maneuver in High Resolution Satellite with TDI (TDI를 사용하는 고해상도 위성의 임무 및 기동 분석)

  • 김희섭;김규선;김응현;정대원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.53-59
    • /
    • 2006
  • Need for agile satellite increases for performing various mission due to increase of satellite image applications and users. In high resolution satellite TDI (time delay and integration) method is adopted in order to improve SNR. But image quality can be degraded by satellite maneuver. In this paper requirements for remote sensing in high resolution satellite with agility are extracted and an approach to operate the agile satellite to perform the missions are proposed. The proposed approach in this paper will be applicable to system level design and analysis.

Modelling of Image Acquisition Scenario and Verification of Mission Planning Algorithm for SAR Satellite (SAR위성의 영상획득 시나리오 모델링 및 임무설계 알고리즘 성능검증)

  • Shin, Hohyun;Kim, Jongpil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.590-598
    • /
    • 2019
  • Today, satellites are widely used in many fields like communication and image recoding. The image acquired by satellites contains variety information of wide region. Therefore, they are used for agriculture, resource exploitation and management, and military purpose. The satellite is required to acquire images effectively in a given time period. Because the period that satellites can acquire images is very restrictive. In this study, the modeling of processing time and attitude maneuvering for satellite image acquisition is performed. From this modeling, mission planning algorithm using heuristic evaluation function is suggested and performance of the proposed algorithm is verified by numerical simulation.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.

Study of Impact on COMS Fuel Consumption by East-West Station Keeping Maneuver Time Shift to Avoid Conflict with the Observation of Full Disk or Similar Meteorological Images (전구 및 유사 기상영상 관측임무와 충돌을 회피하기 위한 동서방향 위치유지기동의 시간 이동이 천리안위성 연료소모에 미치는 영향 연구)

  • Cho, Young-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • In the COMS satellite mission operation, more large meteorological images such as Full Disk(FD) image or 2 adjacent Extended Northern Hemisphere(ENH) images can be taken by the time shift of East West Station Keeping(EWSK) maneuver when the EWSK conflicts with the large images. In this study an analytical approach based on probability of the conflict is proposed for theoretical analysis about the EWSK time shift to avoid the conflict with FD or 2 ENH images. The EWSK time shift has been applied to the COMS operation as a test, too. The theoretical study result and test operation outcome are synthesized to provide the analysis of impact on the COMS fuel consumption by the EWSK time shift. This study is expected to contribute to the maximization of COMS meteorological mission application.

A Proposal on Analyzing Operational Mission Summary/Mission Profile and RAM Goal Setting from Operational Concepts on the Next-MILSATCOM (차기 군 위성통신체계 OMS/MP 분석 및 운용개념으로부터의 RAM 목표값 산출 제안)

  • Park, Heung-Soon;Kwon, Tae-Wook;Lee, Chul-Hwa;Park, Dae-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.295-303
    • /
    • 2013
  • The Operational Mode Summary/Mission Profile(OMS/MP) is a document which describes how a system or training device will be used in wartime and/or peacetime at the time it is field with focus on the future. OMS/MP is also typically used for the RAM goal setting in an early phase of weapon system development. This paper provides OMS/MP and RAM goal of the Next-MILSATCOM which is following military satellite system after ANASIS. We propose operational concepts, user-side OMS/MP model and RAM goal.

Microwave Radiometer for Space Science and DREAM Mission of STSAT-2

  • Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.4-32
    • /
    • 2008
  • The microwave instruments are used many areas of the space remote sensing and space science applications. The imaging radar of synthetic aperture radar (SAR) is well known microwave radar sensor for earth surface and ocean research. Unlike radar, microwave radiometer is passive instrument and it measures the emission energy of target, i.e. brightness temperature BT, from earth surface and atmosphere. From measured BT, the geophysical data like cloud liquid water, water vapor, sea surface temperature, surface permittivity can be retrieved. In this paper, the radiometer characteristics, system configuration and principle of BT measurement are described. Also the radiometer instruments TRMM, GPM, SMOS for earth climate, and ocean salinity research are introduce. As first korean microwave payload on STSAT-2, the DREAM (Dual-channels Radiometer for Earth and Atmosphere Monitoring) is described the mission, system configuration and operation plan for life time of two years. The main issues of DREAM unlike other spaceborne radiometers, will be addressed. The calibration is the one of main issues of DREAM mission and how it contribute on the space borne radiometer. In conclusion, the radiometer instrument to space science application will be considered.

  • PDF

A Study on the RAM Object Values (RAM 요소설계 목표값 연구)

  • 이한규;최진희
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.218-230
    • /
    • 2000
  • In the weapon system development/operation stage, the goals of RAM activities are to support the cost effective performance optimization in design and operation supports. In the study, the main contents are as follows; 1) To establish the operational concept and circumstance of the subsequent tank, the combat/operation scenario, the operational mode summary and mission profile for subsequent tank development are analyzed. 2) To evaluate the administrative and logistics down time for subsequent tank, the prefigured logistics circumstance and maintenance system are analyzed. 3) To calculate the RAM object values, a mathematical model for the user are developed. 4) To examinate the propriety of the RAM object values, the combat readiness are reviewed. The obtained RAM object values are provided to predict and analyze for the combat readiness, staying power, mission reliability, equipment availability and the logistic support capability.

  • PDF

A Study on the Mission Effect of a Sea-based BMD system (해상기반 탄도미사일 방어체계의 임무효과에 관한 연구)

  • Lee, Kyoung Haing;Choi, Jeong Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-126
    • /
    • 2016
  • North Korea has continued developing ballistic missiles with various ranges. Even through the recent launch long-range missiles, it can be inferred that North Korea's Missile technology has reached a level where it can even threaten the US. moreover, through the three times nuclear tests, North Korea is known to have succeeded at gaining 10~20KT of explosive power as well as the minimization and lightening of nuclear warhead. Considering the short length of war zone in Korean peninsula and the possibility of nuclear equipment, if be the most severe threat across the whole peninsula. Since the midcourse phase flight takes the longest time, ROK should establish the ability to intercept at this middle phase. From this perspective, this paper describes mission effect of a sea-based BMD system through empirical threat and flight characteristic analysis using MIT model that was not suggested in original research.