• Title/Summary/Keyword: Missing Data Imputation

Search Result 145, Processing Time 0.017 seconds

Missing Value Imputation based on Locally Linear Reconstruction for Improving Classification Performance (분류 성능 향상을 위한 지역적 선형 재구축 기반 결측치 대치)

  • Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.276-284
    • /
    • 2012
  • Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

arraylmpute: Software for Exploratory Analysis and Imputation of Missing Values for Microarray Data

  • Lee, Eun-Kyung;Yoon, Dan-Kyu;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.129-132
    • /
    • 2007
  • arraylmpute is a software for exploratory analysis of missing data and imputation of missing values in microarray data. It also provides a comparative analysis of the imputed values obtained from various imputation methods. Thus, it allows the users to choose an appropriate imputation method for microarray data. It is built on R and provides a user-friendly graphical interface. Therefore, the users can easily use arraylmpute to explore, estimate missing data, and compare imputation methods for further analysis.

Two-stage imputation method to handle missing data for categorical response variable

  • Jong-Min Kim;Kee-Jae Lee;Seung-Joo Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.577-587
    • /
    • 2023
  • Conventional categorical data imputation techniques, such as mode imputation, often encounter issues related to overestimation. If the variable has too many categories, multinomial logistic regression imputation method may be impossible due to computational limitations. To rectify these limitations, we propose a two-stage imputation method. During the first stage, we utilize the Boruta variable selection method on the complete dataset to identify significant variables for the target categorical variable. Then, in the second stage, we use the important variables for the target categorical variable for logistic regression to impute missing data in binary variables, polytomous regression to impute missing data in categorical variables, and predictive mean matching to impute missing data in quantitative variables. Through analysis of both asymmetric and non-normal simulated and real data, we demonstrate that the two-stage imputation method outperforms imputation methods lacking variable selection, as evidenced by accuracy measures. During the analysis of real survey data, we also demonstrate that our suggested two-stage imputation method surpasses the current imputation approach in terms of accuracy.

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

Comparative Study on Imputation Procedures in Exponential Regression Model with missing values

  • Park, Young-Sool;Kim, Soon-Kwi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.143-152
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

Imputation Procedures in Exponential Regression Analysis in the presence of missing values

  • Park, Young-Sool
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.135-144
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data (K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법)

  • Lee, Dong-Ho;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Missing data is one of the common problems in building analysis or prediction models using software project data. Missing imputation methods are known to be more effective missing data handling method than deleting methods in small software project data. While K nearest neighbor imputation is a proper missing imputation method in the software project data, it cannot use non-missing information of incomplete project instances. In this paper, we propose an approach to missing data imputation for numerical software project data by combining K nearest neighbor and maximum likelihood estimation; we also extend the average absolute error measure by normalization for accurate evaluation. Our approach overcomes the limitation of K nearest neighbor imputation and outperforms on our real data sets.

Imputation Procedures in Weibull Regression Analysis in the presence of missing values

  • Kim Soon-kwi;Jeong Bong-Bin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.143-148
    • /
    • 2001
  • A dataset having missing observations is often completed by using imputed values. In this paper the performances and accuracy of complete case methods and four imputation procedures are evaluated when missing values exist only on the response variables in the Weibull regression model. Our simulation results show that compared to other imputation procedures, in particular, hotdeck and Weibull regression imputation procedure can be well used to compensate for missing data. In addition an illustrative real data is given.

  • PDF

A Study on Automatic Missing Value Imputation Replacement Method for Data Processing in Digital Data (디지털 데이터에서 데이터 전처리를 위한 자동화된 결측 구간 대치 방법에 관한 연구)

  • Kim, Jong-Chan;Sim, Chun-Bo;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.245-254
    • /
    • 2021
  • We proposed the research on an analysis and prediction model that allows the identification of outliers or abnormality in the data followed by effective and rapid imputation of missing values was conducted. This model is expected to analyze efficiently the problems in the data based on the calibrated raw data. As a result, a system that can adequately utilize the data was constructed by using the introduced KNN + MLE algorithm. With this algorithm, the problems in some of the existing KNN-based missing data imputation algorithms such as ignoring the missing values in some data sections or discarding normal observations were effectively addressed. A comparative evaluation was performed between the existing imputation approaches such as K-means, KNN, MEI, and MI as well as the data missing mechanisms including MCAR, MAR, and NI to check the effectiveness/efficiency of the proposed algorithm, and its superiority in all aspects was confirmed.

Application of SOLAS to the Multiple Imputation for Missing Data

  • Moon, Sung-Ho;Kim, Hyun-Jeong;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.579-590
    • /
    • 2003
  • When we analyze incomplete data, i.e., data with missing values, we need treatment for the missing values. A common way to deal with this problem is to delete the cases with missing values. Various other methods have been developed. Among them are EM algorithm and regression algorithm which can estimate missing values and impute the missing elements with the estimated values. In this paper, we introduce multiple imputation software SOLAS which generates multiple data sets and imputes with them.

  • PDF