• 제목/요약/키워드: Miscibility

검색결과 199건 처리시간 0.025초

The Effects of Blend Composition and Blending Time on the Ester Interchange Reaction and Tensile Properties of PLA/LPCL/HPCL Blends

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.59-65
    • /
    • 2003
  • PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable fila-ment sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by $^1{H-NMR}$, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreafed by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at $200^{\circ}C$ for 30-60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three poly-mers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.

Effect of Polymer Characteristics on the Thermal Stability of Retinol Encapsulated in Aliphatic Polyester Nanoparticles

  • Cho, Eun-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2560-2566
    • /
    • 2012
  • The present study investigates how the thermal stability of retinol (vitamin A) encapsulated in polyester nanoparticles is influenced by the types of polyester used for the nanoparticles. A variety of polyester-retinol nanoparticles were prepared with various polyesters like: poly(ethylene adipate), PEA; poly(butylene adipate), PBA; poly(hexamethylene adipate), PHMA; and three polycaprolactones, PCL, of different molecular weights ($M_n$ ~10, 40, and 80K). The chemical stability of retinol in these nanoparticles, monitored in an aqueous solution at $25^{\circ}C$ and $40^{\circ}C$ for 4 weeks, was high in the following order of the nanoparticles prepared with PHMA > PCL 40K > PCL 10K > PCL 80K > PBA~PEA at $25^{\circ}C$ and PCL 10K > PCL 40K > PHMA > PCL 80K > PEA > PBA at $40^{\circ}C$. More importantly, this study has also found that the thermal stability of the retinol in the nanoparticles was closely connected with the melting temperatures of polyesters and polyester nanoparticles. The results were further discussed with possible factors - such as sample preparation condition (or history) and miscibility between the polyesters and retinol - affecting $T_m$ of the polyesters and the nanoparticles.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.

변성전분과 폴리에틸렌 혼합물의 물성 및 분해성 평가 (Mechanical Properties and Degradability of Modified Starch and Polyethylene Blends)

  • 장시훈;유영선;서종철;박수일
    • 한국포장학회지
    • /
    • 제16권2_3호
    • /
    • pp.59-65
    • /
    • 2010
  • Starch was modified with epichlorohydrin(ECH) to improve the miscibility with LDPE and LLDPE. Native starch or epichlorohydrin treated starch was mixed with grycerol and LDPE/LLDPE resin using a kneader and extruded using a single screw extruder to make pallets. The pallets were compression-molded at 145 into composite boards to evaluate their color, oxygen permeation, mechanical and thermal properties, and degradability under UV irradiation. Sheets with epichlorohydrin treated starch generally showed higher L-value than that of native starch blend sheets. The hunter b-values in both native starch blends and epichlorohydrin treated starch blends increased with Increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. The degradability of blends under UV radiation increased with increasing starch contents in both blend types. The results represents that crosslinking of starch with epichlorohydrin may be a good method to improve miscibility of starch with petroleum-based materials.

  • PDF

혼합연료의 특성에 관한 연구 (A Study on the Mixed Fuel Characterization)

  • 한규일
    • 수산해양기술연구
    • /
    • 제26권3호
    • /
    • pp.288-294
    • /
    • 1990
  • 혼합연료의 혼합성에서 보았을 때, #6 오일은 메타놀, 에타놀, 프로파놀등 어느 알콜과도 혼합하지 않고 급격한 분리 현상을 일으켰으며, #1 오일과 메타놀의 혼합에서도 알콜 함량이 매우 낮을 때를 제외하고는 거의 혼합되지 않았다. 에타놀과 프로파놀만이 #1 오일과 균일한 상태(homogeneous condition)로 혼합되었다. 인화점은 알콜 함량의 증가에 의해 급격히 하락하다가 알콜 함량 20% 이상에서 순수한 알콜과 차이를 보이지 않았으며, 점성은 에타놀 혼합의 경우는 혼합비의 증가에 따라 완만히 감소하였으나, 프로파놀의 경우는 증가하였다. 화염의 용적은 알콜 증가에 따라 감소하고 길이도 짧아졌으나 에타놀 혼합체의 경우에만 예외를 나타내었으며, 휘도도 알콜 증가에 따라 눈에 띄게 감소하였다.

  • PDF

Miscibility of Branched Polycarbonate Blends with Poly(ethylene-co-1,4-dimethyl cyclohexane terephthalate) Copolyesters

  • Song, Jeong-Oh;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.640-645
    • /
    • 2007
  • The phase behavior of branched polycarbonate (BPC) blends with poly(ethylene terephthalate-co-1,4-dimethyl cyclohexane terephthalate) copolyesters (PECT), as well as their rheological properties, were assessed. Even though BPC blends with PECT prepared by solvent casting proved to be immiscible, BPC and PECT copolyesters containing 1,4-dimethyl cyclohexane (CHDM) from 32 to 80 mole% formed homogeneous mixtures upon heating. The homogenization temperatures of the blends decreased with increasing CHDM content in PECT. The interaction energies of the BPC-PECT pairs calculated from the phase boundary in accordance with the lattice-fluid theory were positive and also decreased with increasing CHDM content in PECT. It was shown that the phase homogenization of these blends occurs upon heating when the combinatorial entropy term, which is favorable for miscibility, overcomes unfavorable energetic terms at elevated temperatures. A novel product, which is not limited by the drawbacks of linear polycarbonate (PC) and evidences processability superior to that of the PC/PECT blends, can be developed via the blending of BPC and PECT.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

DSC와 FTIR을 이용한 상용성 (폴리부틸렌나프탈레이트/폴리비닐페놀) 블렌드의 연구 (DSC and FTIR Studies of Miscible Poly(butylene 2,6-naphthalate)/Poly(4-vinylphenol) Blends)

  • 이준열;한지영
    • 폴리머
    • /
    • 제26권6호
    • /
    • pp.737-744
    • /
    • 2002
  • 결정성 폴리부틸렌나프탈레이트 (PBN)와 비결정성 폴리비닐페놀 (PVPh)로 구성된 2 성분계 고분자 블렌드의 열역학적 상용성을 시차주사열분석 (DSC)과 푸리에변환 적외선 (FTIR) 분광분석으로 조사하였다. PBN/PVPh 블렌드의 DSC 측정 결과로부터 블렌드 전 조성에서 단일 유리전이온도 (T$_{g}$ )가 확인되었으며, 블렌드 내의 PVPh 조성이 증가함에 따라 PBN 결정질의 용융점(T$_{m}$ ) 강하가 관찰되었다. 고분자 블렌드의 단일 T$_{g}$ 및 T$_{m}$ 강하 현상은 PBN/PVPh 블렌드가 분자 수준에서의 열역학적 상용성이 있음을 보여준다. PBN의 에스테르 카르보닐기와 PVPh의 히드록실기 사이에 강한 분자 간 수소결합이 형성됨을 FTIR 분석에 의하여 확인할 수 있었다.

폴리프로필렌/폴리아미드 엘라스토머 블렌드: 모폴로지와 기계적 물성 (Polypropylene/Polyamide Elastomer Blends: Morphology and Mechanical Property)

  • Liu, Qingsheng;Xu, Yan;Zhang, Hongxia;Li, Yuhao;Deng, Bingyao
    • 폴리머
    • /
    • 제38권5호
    • /
    • pp.613-619
    • /
    • 2014
  • The polypropylene/polyamide elastomer (PP/PAE) blends were prepared by melt mixing. PP and PAE in PP/ PAE were immiscible completely. The size of PAE domains was large and the clear gap in the interface between PP and PAE existed, which did not meet the conditions enhancing toughness of polymers by elastomer. Therefore, maleic anhydride grafted polypropylene (MP) was used to improve the miscibility between PP and PAE. The miscibility between PP and PAE was improved and the size of dispersed phase PAE decreased by introducing MP. The crystallization of PP became easier by introducing PAE as a nucleating agent. With the increase of PAE content, the melt-crystallization temperatures of PP components in PP/PAE/MP blends increased gradually. The melt-crystallization of the polytetramethylene oxide segment of PAE component in PP/PAE blends were hampered by PP component. In addition, PAE can enhance significantly the toughness of PP, and the tensile strength and modulus did not decrease.

붕규산 소다 유리의 분상 및 화학적 내구성에 대한 첨가제의 영향 (Effects of Additives on the Phase Sepration and the Chemical Durability of Sodium Borosilicate Glasses)

  • 현상훈;천광수;송원선
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.173-183
    • /
    • 1988
  • Effects of oxide additives such as MoO3, MnO2 ZrO2 and Fe2O3 on the phase separation and the chemical durability of sodium borosilicate glasses which are the host of waste glasses have been investigated as the basic study on the nuclear-waste immobilization through vitrification. MoO3 and MnO2 were found to be phase separation promotors which increased the temperature as well as catalyzed nucleation and growth for the phase separation of the 10Na2-O-3OB2O3-6OSiO2 (wt%) parent glass within the immiscibility region. The glasses had the interconnected phase-separated structure as the amount of addition increased. On the other hand, ZrO2 and Fe2O3 were inhibitors which showed the reverse effects to the above promotors. It was also found that addition of MoO3 could cause the phase separaton of the 20Na2O-10B2O3-70SiO2(wt%) glass even within the miscibility region. Addition of ZrO2 and Fe2O3 increased the chemical durability of the parent glass within the immiscibility region. Within the miscibility region, however, the addition of 1.96 wt % of MoO3 increased the chemical durability considerably, while MnO2 had little effects.

  • PDF