Browse > Article

The Effects of Blend Composition and Blending Time on the Ester Interchange Reaction and Tensile Properties of PLA/LPCL/HPCL Blends  

Yoon, Cheol-Soo (Department of Textile Engineering, Dankook University)
Ji, Dong-Sun (Department of Textile Engineering, Dankook University)
Publication Information
Fibers and Polymers / v.4, no.2, 2003 , pp. 59-65 More about this Journal
Abstract
PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable fila-ment sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by $^1{H-NMR}$, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreafed by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at $200^{\circ}C$ for 30-60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three poly-mers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.
Keywords
Poly(lactic acid); Poly($\varepsilon$-caprolactone); Melt blending; Ester interchange reaction; Alcoholysis;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 J. S. Yoon, I. J. Chin, M. N. Kim, and C. Kim, Macromolecules, 29, 3303 (1996)   DOI   ScienceOn
2 P. A. Holmes, Phy. Technol., 16, 32 (1985)   DOI   ScienceOn
3 R. Gref, Y. Minamike, M. T. Percchia, V. Trubestskoy, V. Torchilin, and R. Langes, Science, 263, 1600 (1994)   DOI   PUBMED
4 H. Tsuji and Y. Ikada, Polymer, 36, 2709 (1995)   DOI   ScienceOn
5 D. W. Grijpma, J. P. Penning, and A. J. Penning, Colloid Polym. Sci., 272, 1068 (1994)   DOI   ScienceOn
6 J. H. Youk and W. H. Jo, Fiber. Polym., 2, 81 (2001)   DOI   ScienceOn
7 C. W. Lee, J. Korean Fiber Soc., 34, 143 (1997)
8 I. Horacek and V. Kalisek, J. Appl. Polym. Sci., 54, 1767 (1994)   DOI   ScienceOn
9 P. J. Flory, J. Am. Chem. Soc., 62, 2255 (1940)   DOI
10 J. H. and W. S. Ha, J. Korean Fiber Soc., 35, 457 (1998)
11 S. C. Tjong, Y. Xu, and Y. Z. Meng, Polymer, 40, 3703 (1999)   DOI   ScienceOn
12 W. J. Bae, W. H. Jo, and Y. H. Park, Macromolecular Res., 10, 145 (2002)   DOI
13 J. E. Mark, 'Polymer Data Handbook', pp.627-633, Oxford Univ. Press Inc., New York, 1999
14 H. R. Kricheldorf, M. Berl, and N. Scharnagl, Macromolecules, 21, 286 (1988)   DOI   ScienceOn
15 D. S. Ji and C. S. Yoon, J. Korean Fiber SoC., 36, 25 (1999)
16 R. S. Porter and L. H. Wang, Polymer, 33, 2019 (1992)   DOI   ScienceOn
17 S. H. Kim and S. W. Kang, Fiber. Polym., 1, 83 (2000)   DOI   ScienceOn
18 A. M. Kotliar, J. Polym. sci., Part D, Macromol. Rev., 16, 367 (1981)   DOI
19 E. J. Choi, J. K. Park, and J. N. Chang, J. Polym. Sci., Part B, Polym. Phys., 32, 2481 (1994)   DOI   ScienceOn