• Title/Summary/Keyword: Mischmetal

Search Result 11, Processing Time 0.03 seconds

Matrix Development in Cast Iron by Addition of Mischmetal Hydrides (주철(鑄鐵)의 기지조직(基地組織)에 미치는 Mischmetal Hydride의 첨가효과(添加效果))

  • Choi, Dap-Chun;Jin, Young-Chul
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.422-428
    • /
    • 1988
  • In this study we have investigated the effects of Mm, MmH and $MmH_2$ on the matrix development in cast iron, The conclusive summary is as follows: The spheroidal graphite was observed when 0.5wt.% or more of mischmetal was added and the matrix was of ledeburite structure, but bull's eye structure was not observed. On the other hand, the bull's eye structure was observed when 0.25wt.% of MmH, or 0.25wt.% to 0.5wt.% of $MmH_2$ was added. Above limit of the additives, the matrix changed into ledeburite structure. As the hydrogen content of mischmetal compound increased from MmH, the range of additives to obtain bull's eye structure expanded. This reveals the significant effect of mischmetal hydride on matrix development in cast iron and the possibility of practical use of the additives.

  • PDF

Hot-Pressed and Die-Upset Mischmetal-Ferroboron Permanent Magnets (핫프레스 및 다이업셋한 미슈레탈-페로보론 영구자석에 관한 연구)

  • ;H. J. Al-Kanani
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2001
  • The magnetic and metallurgical characteristics of Mischmetal(MM) -Ferroboron (FeB) Permanent magnets have been investigated by X-ray diffractometer, scanning and transmission electron microscope and vibrating sample magnetometer under hot-pressing and die-upsetting process. The best magnetic properties obtained in these studies were $H_c$=5.8 kOe, $B_r$=5.0 kG with $(BH)_{max}=7.6 MGOe for melt-spun ribbons, $H_c$=3.0 kOe, $B_r$=4.6 kG with $(BH)_{max}$=2.9 MGOe for hot-pressed magnets and $H_c$=1.8 kOe, $B_r$=5.5 kG with $(BH)_{max}$=4.1 MGOe for die-upset magnets. The higher magnetic properties in die-upset magnets were resulted from alignment of the c-axis along the die-upsetting direction.

  • PDF

Effects of the Substitution of Mischmetal for PrNd on the Microstructures and Magnetic Properties of Rapidly Quenched (MM)PrNd-Fe-B Nanocrystalline Magnets

  • Zhao, Zeng-ru;Wang, Xin;Zhang, Xue-feng;Ma, Qiang;Liu, Yan-li;Li, Yong-feng;Liu, Fei;Wang, Gao-feng
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.60-64
    • /
    • 2017
  • Mischmetal of Bayan Obo ore was utilized to prepare the high performance $(Pr_{7.34}Nd_{21.86})_{1-x}MM_xFe_{68.7}Al_{0.1}Cu_{0.12}Co_{0.88}B$ ribbons using melt-spinning method. Phase composition and magnetic properties were investigated at room temperature. The ribbons mainly consist of $R_2Fe_{14}B$ phase in isotropic nanostructure. Both coercivity and maximum energy product decrease with the increase of MM content. The magnetic parameters of the ribbons with MM = 20 % in mass are $B_r=7.38kGs$, $H_{cj}=13.66kOe$, $(BH)_{max}=11.81MGOe$. Henkel plots were applied to demonstrate the exchange coupling interaction between grains.

Changes of Hydrogen Storage Properties upon Hydrogen Absorption-Desorption Cycling in AB5-type Alloys (AB5계 합금에 있어서 수소 흡수-방출 cycling에 따른 수소 저장 특성 변화)

  • Noh, Hak;Choi, Jeon;Jung, So-Ri;Choi, Seung-Jun;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.177-189
    • /
    • 2001
  • T hydrogen absorption-desorption behavior induced by thermal or hydrogen pressure cycling in a closed system was observed in hydrogen storage alloys, $(La-R-Mm)Ni_{4.5}Fe_{0.5}$, $MmNi_4Fe_{0.85}Cu_{0.15}$ and $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$. Thereby (La-R-Mm), Mm and (Ce-F-Mm) refer to La-rich mischmetal, mischmetal and Ce-free mischmetal respectively. As the results, it is found that the alloy stabilities during thermal cycling varies with alloy composition change. The highest stability occurs in $MmNi_4Fe_{0.85}Cu_{0.15}$ and the lowest stability in $(La-R-Mm)Ni_{4.5}Fe_{0.5}$. Comparing hydrogen pressure cycling with thermal cycling, pressure cycling causes severer degradation of the alloy $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$ than thermal cycling. When the 1500 times-cycled alloy is annealed at $400^{\circ}C$ for 3hrs under 1 atm of hydrogen pressure the hydrogen storage capacity is recovered only partially but not completely to the initial capacity. The amount of capacity loss after annealing is larger in the hydrogen pressure cycled samples than in the thermal cycled, suggesting an incoming of impure gas during hydrogen pressure cycling.

  • PDF

Mischmetal-FeB-(Co,Ti,Al) Permanent Magnets (Mischmetal-FeB-(Co,Ti,Al) 영구자석)

  • Go, Gwan-Yeong;Yun, Seok-Gil;Kim, Se-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1037-1040
    • /
    • 1999
  • Magnetic characteristics of some anisotropic mischmetal- FeB- (Co,Ti,Al) permanent magnets have been investigated. The magnets were fabricated by using hot-pressed and die-upsetting. Hot-pressed $\textrm{(MM)}_{12.5}\textrm{Fe}_{71.9}\textrm{Co}_{5.0}\textrm{Al}_{2.0}\textrm{B}_{8.6}$ permanent magnet showed $\textrm{H}_{c}$=4.27 kOe, $\textrm{B}_{r}$=4.75 kG, $\textrm{(BH)}_{max}$=3.82 MGOe, and die- upset magnet showed $\textrm{H}_{c}$=3.10 kOe, $\textrm{B}_{r}$=5.58 kG, $\textrm{(BH)}_{max}$=5.34 MGOe, respectively. Hot-pressed $\textrm{(MM)}_{12.5}\textrm{Fe}_{77.9}\textrm{Ti}_{1.0}\textrm{B}_{8.6}$ permanent magnet showed $\textrm{H}_{c}$=3.75 kOe, $\textrm{B}_{r}$=4.64 kG, $\textrm{(BH)}_{max}$=2.78 MGOe, and die- upset magnet showed $\textrm{H}_{c}$=3.29 kOe, $\textrm{B}_{r}$=5.01 kG, $\textrm{(BH)}_{max}$=3.54 MGOe, respectively. X-ray diffraction and transmission electron microscopy revealed that the higher energy products in the die-upset magnets results from alignment of the c-axis along the die-upsetting direction. The magnetic anisotropy in hot-pressed MM-FeB- Al magnet is increased by the substitution of Co for Fe.

  • PDF

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

Charge and Discharge Characteristics of Microencapsulated Hydrogen Storage Alloy Electrodes for Secondary Batteries (마이크로캡슐화한 축전지용 수소저장합금 전극의 충·방전 특성)

  • CHOI, Seong-Soo;CHOI, Byung-Jin;YE, Byung-Joon;KIM, Dai-Ryong
    • Journal of Hydrogen and New Energy
    • /
    • v.3 no.2
    • /
    • pp.45-54
    • /
    • 1992
  • An applicability microencapsulation, using electroless copper plating, of hydrogen storage alloy powder as an anode material for nickel-hydrogen secondary batteries was investigated. Alloys employed were $LaNi_{4.7}Al_{0.3}$ and $MmNi_{4.5}Al_{0.5}$(Mm=mischmetal) which have an appropriate equilibrium pressure and capacity. The microencapsulation of the alloy powder was found to accelerate initial activation of electrodes and to increase capacity which is about 285mAh/g for $LaNi_{4.7}Al_{0.3}$. In addition, other charge and discharge characteristics, such as polarization and flatness of charge and discharge potential, were improved due to the role of copper layer as a microcurrent collector and an oxidation barrier of the alloy powder. $MmNi_{4.5}Al_{0.5}$ alloy showed lower capacity than $LaNi_{4.7}Al_{0.3}$ because of higher equilibrium pressure. Cyclic characteristics of both alloys were somewhat poor because of mainly shedding and partial oxidation of alloy powder during the cycling. However, it was considered that the microencapsulation method is effective to improve the performances of the hydrogen storage alloy electrodes.

  • PDF

The Effects of Gas Bubbles on the Graphite Spheroidization in Cast Iron (주철의 흑연구상화에 미치는 기포의 영향)

  • Park, Shil-La;Choi, Dap-Chun;Kim, Kwan-Hyu
    • Journal of Korea Foundry Society
    • /
    • v.9 no.6
    • /
    • pp.474-482
    • /
    • 1989
  • The aim of this research is to investigate the effects of gas bubbles on the formation of spheroidal graphite in cast iron, Fe-Si-8%Mg alloy, mischmetal hydride($MmH_2$) and $CaCO_3$, which discharge various amounts of Mg, $H_2$ and $Co_2$, gases, were added to Fe-3.9% C-2.0%Si melt and the melt was innoculated with 0.3wt% of 75%Fe-Si. The spheroidal graphites and/or compacted vermicular graphites were produced with more than 0.625cc/g of Mg gas or more than 0.3125cc/g of $H_2$ gas while $CO_2$ gas did not contribute to graphite spheroidization. Nodule counts increased with the amount of Fe-Si-Mg added ; but they decreased with the amount of $MmH_2$ added because the number of effective gas bubbles decrease with the increase in Mm residual. The bull's eye structure was revealed with 0.625cc/g, 1.25cc/g of Mg and 0.3125cc/g of $H_2$ ; the ledeburite structure was revealed with more than 0.625cc/g of $H_2$.

  • PDF

Electrochemical Properties of the AB2-type Metal Hydride Electrode Prepared by Ball Milling (Ball milling한 AB2계 금속수소화물 전극의 전기화학적 특성)

  • Choi, Seung-Jun;Shim, Jong-Su;Oh, Se-Ung;Noh, Hak;Choi, Jeon;Seo, Chan-Yeol;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.4
    • /
    • pp.181-185
    • /
    • 1997
  • The electrochemical properties of the $AB_2$-type (Zr-Ti-V-Ni-Cr-Co-Mn) metal hydride electrodes prepared by ball milling with $AB_5-type\{(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}\}$(LM : Lanthanum-rich mischmetal) alloy powder as a surface activator were investigated. By ball milling with $AB_5$ type alloy powder, the activation of $AB_2$ type metal hydride electrode was accelerated resulting in an increase of discharge capacity from 35% to 85% of the maximum capacity at the first cycle. As the amount of surface activator increased the activation rate increased, whereas the discharge capacity increased with 10wt% and decreased with 20wt% addition of the surface activator. When the amount of the surface activator was kept constant as 10wt%, the discharge capacity and the activation rate increased with ball milling time up to 20 hours. However beyond 20 hours of ball milling time, they decreased drastically due to the nano-crystallization or amorphorzation of the alloy powder.

  • PDF