• Title/Summary/Keyword: Misbehaving Node

Search Result 15, Processing Time 0.032 seconds

Detection and Management of Misbehaving Node in Tactical Ad-Hoc Networks (전술 Ad-hoc 네트워크에서의 비정상행위 노드 탐지 및 관리)

  • Jang, Beom-Geun;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.333-343
    • /
    • 2009
  • Tactical Information Communication Network(TICN) is a concept-type integrated Military Communication system that enables precise command control and decision making by unifying the diversified military communication network and conveying diverse range of battle field information on real-time, at right place at right time. TICN is designed to advance into high speed, large capacity, long distance wireless relay transmission. To support mobility in battlefield environments, the application of Ad-hoc networking technology to its wireless communication has been examined. Ad-hoc network is consist of mobile nodes and nodes in the network depends on the cooperation of other nodes for forwarding of packets. In this context, some non-cooperating nodes may delay forwarding of packets or drop the packets. This may hamper the network as a whole and disrupt communication between the cooperating nodes. To solve this problem, we present a solution with a Node Weight Management Server(NWMS), which manages each node's weight according to its behavior in local area. When the NWMS detects misbehaving node, it increases the node's weight. If the node's weight exceeds a predefined threshold then the NWMS broadcasts the node's information into network to isolate the misbehaving node from the network. These mechanisms show that they are highly effective and can reliably detect a multitude of misbehaving node.

An Efficient Detection and Management Technique of Misbehavior nodes in Ad-hoc Networks (Ad-hoc 네트워크에서의 효율적인 비정상행위 노드 탐지 및 관리 기법)

  • Lee, Yun-Ho;Lee, Soo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.71-80
    • /
    • 2009
  • Ad-hoc network consists f mobile nodes, which they are together in the communication. However, if some misbehaving nodes are in network, it is faced to many threats. Therefore, detection and management of misbehaving node are necessary to make confident in Ad-hoc networks. To solve this problem, we use Node Weight Management Server(NWMS), which it manage each node's weight in local area. When NWMS detect misbehaving node, it adds the node's weight and if the node's weight exceeds threshold then NWMS broadcasts the node's information to isolate in network. These mechanisms show that they are highly effective and can reliably detect a multitude of misbehaving node.

A Security Model based on Reputation and Collaboration through Route-Request in Mobile Ad Hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4701-4719
    • /
    • 2015
  • A Mobile Ad hoc Network (MANET) consists of mobile nodes which co-operate to forward each other's packets without the presence of any centralized authority. Due to this lack of centralized monitoring authority, MANETs have become vulnerable to various kinds of routing misbehaviour. Sometimes, nodes exhibit non-cooperating behaviour for conserving their own resources and exploiting others' by relaying their traffic. A node may even drop packets of other nodes in the guise of forwarding them. This paper proposes an efficient Reputation and Collaboration technique through route-request for handling such misbehaving nodes. It lays emphasis not only on direct observation but also considers the opinion of other nodes about misbehaving nodes in the network. Unlike existing schemes which generate separate messages for spreading second-hand information in the network, nodes purvey their opinion through route-request packet. Simulation studies reveal that the proposed scheme significantly improves the network performance by efficiently handling the misbehaving nodes in the network.

An Adaptive Security Model for Dynamic Node Behaviour in MANETs

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2861-2880
    • /
    • 2018
  • Mobile Ad hoc Networks (MANETs) have become a viable platform owing to their potential of providing communication without any pre-existing infrastructure and central administrating authority. Mutual support and co-operation among nodes are prerequisites for performing functions in such networks. The scarcity of resources makes it economical for nodes to conserve their resources and misbehave by avoiding participation in the network. Therefore, a mechanism is required to detect and handle such misbehaving nodes and promote co-operation in the network. Existing techniques for handling misbehaving nodes focus only on their current behaviour without considering the antecedent behaviour of nodes. In real world, a node may dynamically change its behaviour in accordance to its requirements. Hence, an efficient mechanism is required for providing security against such misbehaviour. This paper proposes an Adaptive Security Model which contemplates the present as well as anterior behaviour of nodes for providing security against dynamic node behaviour. The adaptivity of the model is nested in its ability to requite well-behaving nodes and penalize misbehaving ones in conformity with their overall behaviour. Simulation results indicate the efficiency of proposed scheme in securing the network from the menace of dynamic behaviour of nodes.

Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

  • Heydari, Vahid;Yoo, Seong-Moo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5150-5169
    • /
    • 2015
  • Mobile Ad hoc NETworks (MANETs) are the best choice when mobility, scalability, and decentralized network infrastructure are needed. Because of critical mission applications of MANETs, network security is the vital requirement. Most routing protocols in MANETs assume that every node in the network is trustworthy. However, due to the open medium, the wide distribution, and the lack of nodes' physical protection, attackers can easily compromise MANETs by inserting misbehaving nodes into the network that make blackhole attacks. Previous research to detect the misbehaving nodes in MANETs used the overhearing methods, or additional ACKnowledgement (ACK) packets to confirm the reception of data packets. In this paper a special lightweight acknowledgement-based method is developed that, contrary to existing methods, it uses ACK packets of MAC layer instead of adding new ACK packets to the network layer for confirmations. In fact, this novel method, named PIGACK, uses ACK packets of MAC 802.11 to piggyback confirmations from a receiver to a sender in the same transmission duration that the sender sends a data packet to the receiver. Analytical and simulation results show that the proposed method considerably decreases the network overhead and increases the packet delivery ratio compared to the well-known method (2ACK).

An Intrusion Detection Technique Suitable for TICN (전술정보통신체계(TICN)에 적합한 침입탐지 기법)

  • Lee, Yun-Ho;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1097-1106
    • /
    • 2011
  • Tactical Information Communication Network(TICN), a concept-type integrated Military Communication system that enables precise command control and decision making, is designed to advance into high speed, large capacity, long distance wireless relay transmission. To support mobility in battlefield environments, the application of Ad-hoc networking technology to its wireless communication has been examined. Ad-hoc network works properly only if the participating nodes cooperate in routing and packet forwarding. However, if selfish nodes not forwarding packets of other nodes and malicious nodes making the false accusation are in the network, it is faced to many threats. Therefore, detection and management of these misbehaving nodes is necessary to make confident in Ad-hoc networks. To solve this problem, we propose an efficient intrusion detection technique to detect and manage those two types of attacks. The simulation-based performance analysis shows that our approach is highly effective and can reliably detect a multitude of misbehaving node.

Partially Distributed Dynamic Model for Secure and Reliable Routing in Mobile Ad hoc Networks

  • Anand, Anjali;Aggarwal, Himanshu;Rani, Rinkle
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.938-947
    • /
    • 2016
  • A mobile ad hoc network (MANET) is a collection of mobile nodes communicating in an infrastructure-less environment without the aid of a central administrating authority. Such networks entail greater dependency on synergy amongst the nodes to execute fundamental network operations. The scarcity of resources makes it economically logical for nodes to misbehave to preserve their resources which makes secure routing difficult to achieve. To ensure secure routing a mechanism is required to discourage misbehavior and maintain the synergy in the network. The proposed scheme employs a partially distributed dynamic model at each node for enhancing the security of the network. Supplementary information regarding misbehavior in the network is partially distributed among the nodes during route establishment which is used as a cautionary measure to ensure secure routing. The proposed scheme contemplates the real world scenario where a node may exhibit different kinds of misbehavior at different times. Thus, it provides a dynamic decision making procedure to deal with nodes exhibiting varying misbehaviors in accordance to their severity. Simulations conducted to evaluate the performance of the model demonstrate its effectiveness in dealing with misbehaving nodes.

Energy Efficient and Secure Multipoint Relay Selection in Mobile Ad hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1571-1589
    • /
    • 2016
  • Nodes in MANETs are battery powered which makes energy an invaluable resource. In OLSR, MPRs are special nodes that are selected by other nodes to relay their data/control traffic which may lead to high energy consumption of MPR nodes. Therefore, employing energy efficient MPR selection mechanism is imperative to ensure prolonged network lifetime. However, misbehaving MPR nodes tend to preserve their energy by dropping packets of other nodes instead of forwarding them. This leads to huge energy loss and performance degradation of existing energy efficient MPR selection schemes. This paper proposes an energy efficient secure MPR selection (ES-MPR) technique that takes into account both energy and security metrics for MPR selection. It introduces the concept of 'Composite Eligibility Index' (CEI) to examine the eligibility of a node for being selected as an MPR. CEI is used in conjunction with willingness to provide distinct selection parameters for Flooding and Routing MPRs. Simulation studies reveal the efficiency of ES-MPR in selection of energy efficient secure and stable MPRs, in turn, prolonging the network operational lifetime.

Power control in Ad Hoc network using ZigBee/IEEE802.15.4 Standard (ZigBee/IEEE802.15.4 표준을 사용하는 Ad Hoc 네트워크 상의 전력 통제)

  • Kirubakaran K.;Lee Jae-Kwang
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.219-222
    • /
    • 2006
  • In this paper an intrusion detection system technique of wireless Ad Hoc network is explained and the advantage of making them work in IEEE 802.15.4/ZigBee wireless standard is also discussed. The methodology that is mentioned here is intrusion detection architecture based on a local intrusion database [1]. An ad hoc network is a collection of nodes that is connected through a wireless medium forming rapidly changing topologies. Due to increased connectivity (especially on the Internet), and the vast spectrum of financial possibilities that are opening up, more and more systems are subject to attack by intruders. An ideal IDS should able to detect an anomaly caused by the intruders quickly so that the misbehaving node/nodes can be identified and appropriate actions (e.g. punish or avoid misbehaving nodes) can be taken so that further damage to the network is minimized

  • PDF

A Novel Trust Establishment Method for Wireless Sensor Networks

  • Ishmanov, Farruh;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1529-1547
    • /
    • 2015
  • Establishment of trust is important in wireless sensor networks for security enhancement and successful collaboration. Basically, a node establishes trust with other nodes by estimating a trust value based on monitored behavior of the other nodes. Since a malicious/misbehaving node might launch different attack strategies and might demonstrate random misbehavior, a trust estimation method should be robust against such attacks and misbehavior. Otherwise, the operation of trust establishment will be meaningless, and performance of an application that runs on top of trust establishment will degrade. In this paper, we propose a robust and novel trust estimation method. Unlike traditional trust estimation methods, we consider not only the weight of misbehavior but also the frequency of misbehavior. The frequency-of-misbehavior component explicitly demonstrates how frequently a node misbehaves during a certain observed time period, and it tracks the behavior of nodes more efficiently, which is a main factor in deriving an accurate trust value. In addition, the weight of misbehavior is comprehensively measured to mitigate the effect of an on-off attack. Frequency and weight of misbehavior are comprehensively combined to obtain the trust value. Evaluation results show that the proposed method outperforms other trust estimation methods under different attacks and types of misbehavior.