
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, Dec. 2015 5150
Copyright ⓒ2015 KSII

Lightweight Acknowledgement-Based
Method to Detect Misbehavior in MANETs

Vahid Heydari and Seong-Moo Yoo

Department of Electrical and Computer Engineering, The University of Alabama in Huntsville
Huntsville, Alabama 35899, USA

[e-mail: {vh0008, yoos}@uah.edu]
* Corresponding author : Seong-Moo Yoo

Received July 13, 2015; revised September 9, 2015; accepted October 3, 2015;

published December 31, 2015

Abstract

Mobile Ad hoc NETworks (MANETs) are the best choice when mobility, scalability, and
decentralized network infrastructure are needed. Because of critical mission applications of
MANETs, network security is the vital requirement. Most routing protocols in MANETs
assume that every node in the network is trustworthy. However, due to the open medium, the
wide distribution, and the lack of nodes’ physical protection, attackers can easily compromise
MANETs by inserting misbehaving nodes into the network that make blackhole attacks.
Previous research to detect the misbehaving nodes in MANETs used the overhearing methods,
or additional ACKnowledgement (ACK) packets to confirm the reception of data packets. In
this paper a special lightweight acknowledgement-based method is developed that, contrary to
existing methods, it uses ACK packets of MAC layer instead of adding new ACK packets to
the network layer for confirmations. In fact, this novel method, named PIGACK, uses ACK
packets of MAC 802.11 to piggyback confirmations from a receiver to a sender in the same
transmission duration that the sender sends a data packet to the receiver. Analytical and
simulation results show that the proposed method considerably decreases the network
overhead and increases the packet delivery ratio compared to the well-known method (2ACK).

Keywords: Mobile ad hoc networks (MANETs), acknowledgment, random access MAC,
misbehaving node, blackhole attack.

http://dx.doi.org/10.3837/tiis.2015.12.023 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5151

1. Introduction

When mobility and scalability are of vital importance, wireless networks are always
preferred. In critical mission applications like military conflict or emergency recovery, Mobile
Ad hoc NETworks (MANETs) are the best choice because of having a decentralized network
infrastructure. MANETs rely on the benevolence of nodes within the network to forward
packets from a source node to a destination node (multi-hop forwarding). Because of critical
mission applications of MANETs, network security is one of the most important requirements.
Unfortunately, due to the open medium and the lack of nodes’ physical protection, attackers
can easily capture and compromise nodes to achieve their goals. In particular, most routing
protocols in MANETs assume that every node in the network is trustworthy and presumably
not malicious. So, attackers can easily compromise MANETs by inserting misbehaving nodes
into the network. A misbehaving node is a node that cooperates in route finding phase and
forwards all control packets (such as route request, route error, and route reply) correctly, but
silently drops all data packets. Many research efforts have been devoted to detect the
misbehaving nodes in MANETs that can be classified into two categories: monitoring-based
methods and acknowledgment-based methods. The main problem with monitoring-based
methods is that the overhearing method is unable to determine accurately the misbehaving
nodes because of transmission instability in wireless networking environments that have been
explained in [3]. The acknowledgment-based method solves the problems of
monitoring-based methods by using additional ACK packets to confirm the reception of data
packets. However, this performance improvement has an additional cost which is the overhead
made by these ACK packets.

When a method adds one extra packet to the network layer, the method is actually adding at
least four extra packets (RTS, CTS, Data, ACK), according to IEEE 802.11 protocol, to the
MAC layer. Note that in MAC layer, IEEE 802.11 protocol uses mandatory ACK packets to
confirm the reception of transmitted data packets. Therefore, in this paper a special
lightweight acknowledgement-based method, named PIGACK, is developed that on the
contrary to existing methods, it uses ACK packets of MAC layer instead of adding new ACK
packets to the network layer for confirmations. In fact, this novel method uses ACK packets of
MAC 802.11 to piggyback confirmations from a receiver to a sender in the same transmission
duration that the sender sends a data packet to the receiver. In this method, a message
authentication code is used to authenticate the sender of the packet. Analytical and simulation
results show that the proposed method considerably decreases the network overhead and
increases the packet delivery ratio compared to the well-known method (2ACK [10]).

Our Contributions–We develop the PIGACK method for detecting and isolating
misbehaving nodes. Compared to state-of-the-art, PIGACK provides the following additional
features:
• Misbehaving node detection instead of misbehaving link detection: PIGACK can detect

misbehaving nodes and prevent using any links that include them (increase in packet
delivery ratio).

• Informing other source nodes by informing the neighbors (at least half of them) of the
newly misbehaving node detected to prevent using this misbehaving node by other source
nodes (increase in packet delivery ratio).

5152 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

• Decrease in routing overhead: PIGACK uses ACK packets of MAC 802.11 to piggyback
confirmations from a receiver to a sender in the same transmission duration that the sender
sends a data packet to the receiver. Therefore, PIGACK does not use any extra ACK
packets.

Paper Organization– The rest of this paper is organized as follows. Related work is
covered in Section 2. Proposed PIGACK method is introduced in Section 3 including attack
types. Section 4 and 5 cover analytical model and simulation. Finally, conclusion is explained
in Section 6.

2. Related Work
In this section, previous methods, to detect and mitigate malicious nodes in MANETs, are
explained. As above-mentioned, these methods can be classified into two main categories;
monitoring-based methods and acknowledgment-based methods. We introduce some
important methods of each category and explain their advantages and disadvantages.

2.1 Monitoring-Based Methods
The main idea of monitoring-based methods is to exploit wireless medium nature that each
transmission can be heard by one-hop neighbors. In these methods a sender places itself in a
promiscuous mode after transmitting a packet to overhear the retransmission by the
forwarding node. Using this method, a node can know whether the packet, which has been sent
to its neighbor, is indeed forwarded or not. Marti et al. [11] proposed two extensions to the
DSR protocol, Watchdog and Pathrater. The Watchdog is based on promiscuous mode
operation of the nodes to detect misbehaving nodes. Pathrater uses the knowledge from
Watchdog to choose a path without any misbehaving nodes. Buchegger and Boudec [4]
proposed CONFIDANT, an extension to the DSR which adds the reputation system and the
trust manager to the Watchdog and Pathrater mechanisms. When misbehaving nodes are
detected via Watchdog, an alarm is sent to the other nodes, defined as friends, to isolate the
misbehaving nodes from the network. Winjum et al. [15] described a mechanism that uses a
trust metric for routing. This method is based on detection of routing information sent by
trusted nodes or sent by other nodes in the network. Each node should store two routing tables,
one for trusted routes and another for unreliable routes. Pirzada et al. [12] used trust and
reputation in the DSR protocol. The trust value calculated in the promiscuous mode is used to
select a trusted route without misbehaving nodes. But in this method a wrong recommendation
may occur and be used by other nodes. Chang et al. [5] used distributed authentication
authorities which employ distributed trusted groups for the authentication process. However,
this method works in the dynamic MANET with high delay. Chen et al. [6] employed a
distributed trusted routing framework that authenticates messages, nodes and routes. But this
method needs the certificate authority. Xia et al. [16] presented a dynamic trust prediction
model to evaluate the trustworthiness of nodes, which is based on the nodes’ historical
behaviors, as well as the future behaviors via the prediction of extended fuzzy logic rules
prediction.

The base of all above-mentioned methods is the trust degree of each node resulted from the
promiscuous mode operation of the nodes. In other words, each node promiscuously listens to
its wireless medium, catches all packets in its antenna range and sends these packets to the
network layer, which saves all of them in the table and uses a watchdog timer to detect the
misbehavior of the one-hop neighbors. However, the overhearing technique is not likely to be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5153

accurate for MANETs due to varying noise levels, varying signal propagation characteristics
in different directions, and interference from competing transmissions [3].

2.2 Acknowledgment-Based Methods
These methods are based on acknowledgments for packets delivery confirmation.
Balakrishnan et al. [2] proposed a network-layer acknowledgment-based scheme, called
TWOACK, to detect misbehaving nodes. The TWOACK is based on the Watchdog method;
however, it does not use the overhearing technique (the promiscuous mode). It sends two-hop
acknowledgment in the reverse direction to confirm that the intermediate nodes cooperated in
the packet forwarding. The TWOACK resolved some problems of the promiscuous mode such
as ambiguous collisions, receiver collisions and the limited transmission power. Liu et al. [10]
proposed 2ACK scheme that uses acknowledgments like the original TWOACK scheme. Two
major differences between them are as follows:
1) The 2ACK scheme uses an authentication mechanism to avoid tampering of the 2ACK

packets, whereas the TWOACK scheme does not use authentication.
2) The intermediate nodes in the 2ACK scheme may only send a fraction of 2ACK packets

with the tradeoff of increased delay in misbehavior detection (more packet dropping).
Therefore, the 2ACK scheme may have less overhead than the TWOACK method because
in the TWOACK scheme the intermediate nodes send the whole TWOACK packets for
every data packet. Note that we will use 2ACK packets for all received data packets to
achieve the best performance of 2ACK (minimum delay in misbehavior detection) in our
analysis and simulation.

The shortcomings with the mentioned acknowledgement-based methods are as follows:
1) Message overhead: both methods have overhead messages (2ACK and TWOACK

packets).
2) The 2ACK scheme cannot detect “false alarms”. The 2ACK waits a certain time to receive

ACK packet; however, sometimes, because of congestion or link fail detection time, a link
(a pair of nodes) may be reported as a misbehaving link. In this situation the 2ACK does
not have any method to exonerate this link. In the worst case, “intentional false alarms”
(slander attacks) may occur. Assume that we have n1, n2, n3, n4, n5, n6, n7 on the path. If
n3 receives the ACK packet of n5, but sends a false alarm to n1, the link n4-n5 will be
saved as a misbehaving link. However, neither n4 nor n5 is a misbehaving node. By this
attack n3 can accuse all links between its neighbors and their neighbors.

Some other methods, mentioned below, claimed that not only can detect blackhole attacks
but also are able to detect collusion blackhole attacks due to collusive misbehaving nodes
which cooperate in the route discovery, but refuse to forward data packets and do not disclose
the misbehavior of each other. Note that we assume no collusion among misbehaving nodes in
our method.

Awerbuch et al. [1] proposed an on-demand secure routing protocol (ODSBR) to identify
misbehaving links and collusion blackhole attacks. In ODSBR, audited nodes acknowledged
audited packets back to the source. Then the source performs a binary search to identify the
misbehaving link. The main problem of the ODSBR is explained in this example: Suppose in
ODSBR a misbehaving node drops all data packets except the packets that contain probes for
one of the next nodes, only the data packets contain probes will reach the destination node.
Therefore, the packet delivery ratio cannot exceed 50%.

Sun et al. [14] proposed a scheme, called NACK, which adopts an acknowledgment-based
approach and compares timestamps to resist collusion attacks. The NACK scheme, similar to

5154 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

the TWOACK and the 2ACK schemes, sends two-hop acknowledgments in the reverse
direction (NACK packets) to confirm that the intermediate nodes cooperated in the packet
forwarding. For this goal, the NACK scheme uses a timestamp comparison and an additional
route between source nodes and destination nodes to detect malicious nodes. The NACK
method uses time synchronization techniques and assumed that the second route does not have
any misbehaving node.

Shakshuki et al. [13] proposed a hybrid scheme, called EAACK, to detect collusion
blackhole attacks which includes three phase. First of all, the destination must send an
end-to-end acknowledgement packet (ACK) to the source node. If the source node does not
receive the ACK packet, it starts the second phase, where EAACK uses the TWOACK to
detect two neighbor nodes as misbehaving nodes. However, the source node does not
immediately trust the misbehavior report. When the second phase is finished, the source node
starts the third phase. On this phase, the source node uses a second route and asks the
destination whether it received the removed packet or not. This phase helps the source node to
detect false misbehaving reports. The EAACK, like the NACK, assumed that the second route
is available and does not have any malicious nodes. The main problem of the EAACK is
similar to the ODSBR that a malicious node can do partial dropping without being recognized.

Two main common problems of above-mentioned acknowledgment-based methods are:
1) Misbehaving link detection instead of misbehaving node detection: These methods cannot

detect a misbehaving node. They can only determine two neighbor nodes and cannot
detect which of them is misbehaving. By the error reports from one of the intermediate
nodes, the source node detects the link between two nodes as a misbehaving link, but a
link cannot be misbehaving, in fact, anyone of the two end nodes of a link may be
misbehaving. The source node will not use this link in the future, but due to lack of
accurate detection of the misbehaving node, the node may be used in another path by the
source node. Therefore, a misbehaving node can be used for more than one time without
being recognized. In fact, a misbehaving node can be placed on different paths equal to the
number of its neighbors.

2) When a misbehaving link is detected, an alarm will be sent to the source node. All
intermediate nodes between the reporter and the source node as well as the source node
will be informed of this link. However, a new source node which was not informed must
detect this misbehaving link by itself, which consumes time and decreases the packet
delivery rate. In fact, the 2ACK does not have any method to inform other source nodes of
misbehaving links detected.

In this paper we try to solve the above-mentioned problems. Therefore, our goals are:
decreasing the network overhead, detecting false alarms, detecting misbehaving nodes instead
of misbehaving links, and informing other source nodes by informing the neighbors (at least
half of them) of misbehaving node detected.

3. Proposed PIGACK Method

3.1 Assumptions
• DSR is the protocol used for network layer.
• There is no collusion among misbehaving nodes.
• Each node has a unique ID and cannot be spoofed.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5155

• A misbehaving node is a node that cooperates in route finding phase and forwards all
control packets (such as route request, route error, and route reply) correctly, but silently drops
all data packets. Each node in a path may be malicious except source and destination nodes
which are assumed to be trusted.

• A suspicious node is a node that was reported as a misbehaving node by another node.
However, it already sent the PIGACK packet of its next node to the neighbors (and source in
new route) to exonerate itself. If a node is detected two times as a suspicious node (reported by
different nodes), it will be marked as a misbehaving node.

• By default, each node has a table and for every node in the network it has an entry with
four fields: its ID, its public key (or symmetric key), malicious flag, and reporter. The
malicious flag is zero by default and if it is detected that the node is misbehaving, this flag will
be two. This flag will be one if the node is detected as a suspicious node. The reporter field is
the node ID of the node that reports this misbehavior.

• Each node has a data structure. Each entry include: PreNodeID, NextHopNodeID,
SecondHopNodeID, Cpkts, Cmis, and a list that contained PID, Send, State, Timeout,
Confirmation. For node B, as an example, on the route {S, A, B, C, D}, PreNodeID is A’s ID,
NextHopNodeID is C’s ID and SecondHopNodeID is D’s ID. PreNodeID for S is zero
(because S is the source). NextHopNodeID for D and SecondHopNodeID for C are zero
(because D is the destination). Cpkts is a counter of forwarded data packets and Cmis is a counter
of missed data packets. PID is the packet ID of received data packet. Received confirmation of
next node in a PIGACK packet is saved on Confirmation field and Send field will be set when
saved confirmation is forwarded to the previous node. State is zero when sending a new packet
and Timeout (timeout period) is set. When next hop node’s confirmation is received, State will
be set to one and after receiving confirmation of the second-hop node, it will be set to two and
Timeout will be reset.

• Each PIGACK packet contains confirmations that the number of them is determined
by Cconfirm (1 ≤ Cconfirm ≤ maximum number of packets waited for confirmation). Each
confirmation includes three fields: NodeID, PID, and MAC. MAC is the message
authentication code created by the node that its ID is NodeID and PID demonstrates the ID of
the received data packet by this node.

We add one field to the route error packet of DSR named Malicious. If this field is set, the
next node of this error producer is a misbehaving node. Malicious is zero for a normal route
error packet.

3.2 Proposed Method
According to IEEE 802.11, an ACK packet must be sent by the receiver to confirm the
reception of the packet. Our goal is piggybacking some information to these ACK packets of
MAC layer instead of using ACK packets of network layer. Hereinafter, we use “PIGACK” as
the ACK packet of MAC layer which contains confirmations. Each node when sends a data
packet and receives PIGACK packet must save the next node’s confirmation (included in the
received PIGACK) and send back with its confirmation for the next packet sent from the
previous node inside a new PIGACK packet. In fact, each node when receives a data packet
must send back a PIGACK packet that includes:

1) The confirmation of reception of this packet created by this node, and
2) The confirmation of the previous packet created by the next node to prove its honesty.
This idea works well in a network without any congestion so only one packet may be

waited for confirmation in each node. Therefore, sometimes a node may not have any ready
confirmation of its next node to send back to the previous node or may have more than one

5156 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

confirmation ready to send back. Therefore, we add Cconfirm to PIGACK packet to specify the
number of confirmation included in this packet. PIGACK method can be summarized in the
pseudocode as follows:
A. Pseudocode of PIGACK Method

For all algorithms:
Require: Path includes [PreNodeID, NextHopNodeID, SecondHopNodeID] obtained from packet header.
Require: Entry of Path in the data structure of this node.
Require: List of (PID, Send, State, Timeout, Confirmation) for Entry
A.1 Sending a data packet:

1: if Entry is empty then
2: Entry = new entry for this Path in data structure
3: List ← Ø, Cpkts ← 0, Cmis ← 0
4: end if
5: Cpkts ++
6: add new entry to List of this Entry
7: PID ← packet ID, Send ← 0, State ← 0
8: Timeout ← maximum delay per 2-hops + current time

A.2 Receiving a data packet and sending a PIGACK packet:
1: if Entry is empty then
2: Entry = new entry for this Path in data structure
3: List ← Ø, Cpkts ← 0, Cmis ← 0
4: end if
5: prepare PIGACK packet and insert ACK fields to it
6: prepare new confirmation
7: NodeID ← ID of this node, PID ← received packet ID, MAC ← sign (NodeID, PID) by private key
8: insert confirmation into PIGACK
9: Cconfirm ++
10: for each stored confirmation in List do
11: if send equals to zero then
12: add stored confirmation to PIGACK
13: Cconfirm ++, Send ← 1
14: end if
15: end for

A.3 Receiving a PIGACK packet:
1: if MAC is not valid or Cconfirm equals to zero then
2: prepare route broken alarm for upper layer
3: Malicious ← 0
4: else
5: find entry of List for this Path where PID = pachet ID
6: store received confirmation to the entry of List
7: state ← 1
8: if SecondHopNodeID equals to zero then
9: state ← 2 // the next node is destination so this node should not wait for the second hop node
10: end if
11: if PreNodeID equals zero then
12: send ← 1 //this node is a source so should not send back confirmations
13: end if
14: for each extra confirmation in PIGACK do
15: if MAC is verified by SecondNodeID’s key then
16: find entry of List where its PID equals to confirmation’s PID
17: State ← 2
18: Timeout ← 0
19: end if
20: end for
21: end if
22: for each PID in List with State < 2 do
23: if current time > Timeout and Timeout does not equal to zero then
24: Cmis ++
25: Remove this entry from List
26: end if
27: end for
28: if Cmis/Cpkts > threshold for Entry then
29: prepare route broken alarm for upper layer
30: Malicious ← 1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5157

31: remove Entry from data structure
32: end if

Nodes have a table for each Path (specified by the previous node, the next hop node, and
the second hop node). When a node receives a packet, the node adds its ID as a new entry to
this table and calculates a timeout period for it. This timeout period is equal to the maximum
waiting time to prepare the confirmation of the second hop node in the next hop node for this
packet ID (so at the next sending packet, this confirmation will be received). Therefore, this
timeout is equal to the maximum delay per two hops. If we use the 95-percentile of response
time of each node as the delay per hop, we must specify a node as a misbehaving node if the
ratio of Cmis/Cpkts is more than five percent (Threshold). If the timeout is reached and this node
did not receive specific confirmation (the second hop confirmation) after sending a new packet
to the next node, this node removes the table entry for that packet ID and increases Cmis. If the
ratio of Cpkts to Cmis is more than specific Threshold, the next node ID will be stored as a
misbehaving node and an error signal will be sent up from MAC layer to network layer that
mentions this misbehavior and DSR will set Malicious field of the route error packet to inform
other nodes of this misbehaving node. This route error packet will be sent to the source node IP
address as the destination IP address (similar to normal DSR). However, the MAC layer will
send it as a broadcast message. By this way, neighbors of this node will see this misbehaving
node report, but only one of them (according to the header of DSR) will forward this packet to
the source node. These neighbors and the source node will remove all routes in their caches
that include the misbehaving node and set the malicious flag of this node to two and store the
ID of its reporter in the table. Malicious flag in the table will be set to one if the misbehaving
node proves its honesty so it will be change from a misbehaving node to a suspicious node.

Using this technique that neighbors are informed of this misbehavior can increase the
packet delivery ratio because they abstain to forward any packet from other sources to this
misbehaving node.

We put some change to DSR to behave correctly with its route request and route reply
packet. When a node receives a route request or reply packet, it must check the route in the
packet header (list of intermediate nodes saved on the header) and drop this packet if the route
contains any pre-reported misbehaving node (or two neighbor suspicious nodes).

We change the ACK packet format of MAC layer to include confirmations to it. As
mentioned in assumptions (Section 3.1), the new packet (PIGACK packet) format includes:
(see Fig. 1)

• Standard ACK fields
• Cconfirm (the number of confirmations included in this PIGACK)
• One or more confirmations (NodeID, PID, and MAC)

Fig. 1. PIGACK packet format (number of confirmation is equal to Cconfirm).

3.3 Message Authentication Code
We have two choices for message authentication code:
1) Digital signature (default method for PIGACK): In this method we use elliptic curve

online/offline digital signature [18] that needs 160 bits key size for security level 80 and
creates signatures with the size of 320 bits. We assume offline key distribution method and

5158 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

sequential packet ID started from a number mentioned in the first data packet (this packet
does not need confirmations). Therefore, nodes will have enough time to prepare the next
signature before receiving the next data packet.

2) UMAC: This is the fastest reported message authentication code in the cryptographic
literature used symmetric technique and a fast universal hash function [9]. The key size is
128 bits (security level 80) and its output is 64 bits. We assume offline distribution shared
keys so each node has shared keys of other nodes. The advantages of this method are: (1)
smaller key size and output size and (2) fast enough to prepare the code during a short
interframe space (SIFS) time interval (the time between receiving a packet and sending an
ACK according to IEEE 802.11), so we do not need the sequential packet ID. On the other
hand, its disadvantage is: having problem (similar to 2ACK) to detect attack type 2 and 3
explained in Section 3.4. Hereinafter, we use PIGACK_U to refer to PIGACK that uses
UMAC for message authentication codes.

3.4 Attack Types
In this section we explain different types of attacks related to our method. Assume a route from
S to D includes A, B, and C ({S, A, B, C, D}). In these attack types, a node may only drop data
packets (blackhole attack), create false alarms by sending wrong 2ACK (or PIGACK) to
slander other nodes (slander attack), or participate with other misbehaving nodes (collusion
attack). Note that we assume no collusion attacks in the network so we will not discuss
collusion blackhole, slander, or framing attack. The attack types that we consider are as
follows:

Type 1. C does not send the 2ACK (or PIGACK) packet to B.
2ACK: A does not receive 2ACK of C so it detects link B-C as a misbehaving link and

reports this link to the source. Other links that include C may be used by this source and all the
links may be used by other sources.

PIGACK: A PIGACK packet contains the standard ACK packet and missing a PIGACK
means missing the ACK, so B will send a route error packet according to IEEE 802.11 and
DSR. On the other hand, if C sends a PIGACK without received D’s confirmation, B will
detect C as a misbehaving node after the timeout period.

Type 2. C sends its 2ACK (or PIGACK) packet to B with a wrong message authentication
code (or wrong MAC of its confirmation inside PIGACK).

2ACK: B cannot detect any problem because the packet is signed for A and according to the
message authentication code used by 2ACK, only C and A can read this packet. Therefore, A
will detect link B-C as a misbehaving link.

PIGACK: B reads the digital signature of C and detects this fault and behaves similar to the
situation that B did not receive the PIGACK of C (creates the route error packet).

Type 3. A creates a false alarm and mentions B as a misbehaving node.
2ACK: This problem cannot be solved in 2ACK because the misbehavior of A will not be

detected by the source so the source will mention link B-C as a misbehaving link.
PIGACK: B is one of the neighbors of A so B will see this false alarm and will send the

PIGACK packet containing the confirmation of C as a broadcast message with Time To Live
(TTL) equal to two to inform the neighbors of A and will send it in a new route to the source. In
this situation, the neighbors and the source will mention both A and B as misbehaving nodes.
Although B is detected wrongly as a misbehaving node, A isolates itself by doing this attack.
Therefore, creating a false alarm is so costly for a misbehaving node.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5159

4. Analytical Model for Overhead Ratio
In this section we use an analytical model using queuing theory to obtain the network overhead
ratio. For calculating the overhead in this paper, we focus on the overhead of both MAC and
network layers instead of considering only the overhead of network layer because of two
reasons:

1) Some information is piggybacking to the ACK packet of MAC layer and 2ACK
method adds new packets to the network layer, so we have to obtain the overhead from
both layers.

2) By focusing on the overhead of both MAC and network layers we can calculate the real
overhead that includes all DSR and MAC headers, routing packets of DSR, and control
packets of MAC layer. For example, when we add 2ACK packets to the network layer,
we will have some additional overhead because of MAC control packets such as
Request to Send (RTS), Clear to Send (CTS) and ACK packets. The number of RTS
packets is not equal to the number of transmissions because of collisions. Therefore,
adding a new packet or changing a packet size will change the network load and will
have effect on the number of collisions and RTS packets so our real network overhead
must be obtained by considering both layers instead of only the network layer.

First of all, we will briefly introduce IEEE 802.11 MAC protocol and explain the
assumptions and queuing network model. Then, we explain our overhead analysis.

4.1 MAC Protocol
IEEE 802.11 protocol defines a distributed coordination function (DCF), for sharing access to
the medium, based on the CSMA/CA protocol. A node listens to the channel before the
transmission to determine whether it is free or not. If the medium is sensed to be free for a DCF
interframe space (DIFS) time interval, the transmission will proceed by sending a RTS packet
to announce the upcoming transmission. When the destination node receives the RTS, it will
send a CTS packet after a SIFS time interval. The source node is allowed to transmit the data
packet only if it receives the CTS packet correctly. The destination node must send an ACK
packet after a SIFS time on receiving the data packet.

If the medium is busy or the node does not receive the CTS packet, the node must defer its
transmission until the end of the current transmission and then must wait an additional DIFS
interval and generate a random backoff time. This process minimizes collisions during
contention between multiple nodes.
Definition 1: Backoff time: backoff time = Random() × SlotTime where Random() is a
pseudorandom integer among [0, CW-1] where CWmin ≤ CW ≤ CWmax and the SlotTime is one
of the physical layer characteristics.

The contention window (CW) parameter must take the CWmin as the initial value. Every
node must maintain a Station Short Retry Count (SSRC) which must take an initial value of
zero and its range is [0, 7]. After each unsuccessful transmission retry, the SSRC will be
incremented and the CW will take the next value that is the result of multiplying the previous
value by two. If the CW reaches the CWmax, it will not continue to increase. If the SSRC
reaches the last number in its range, the packet will be dropped. After each successful
transmission, the CW and SSRC will be reset to the initial value.
Definition 2: The mean backoff time for the first try: E[TB] = (CWmin × SlotTime) / 2.

Because we want to consider the medium as a server and nodes as its customer (will be
explained in Section 4.3), our server always will have at least one customer that is in the first
round (CWmin) of backoff time. Therefore, we use CWmin in Definition 2.

5160 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

4.2 Assumptions
• The total number of nodes in the network and the size of network must satisfy the network

connectivity according to the node density of the network.
• The network consists of N nodes that are distributed uniformly and independently over the

area of X × Y.
• We assumed, for simplicity, an equal transmission range denoted by r(n) and equal carrier

sensing range denoted by c(n) for each node.
• Let rij denote the distance between node i and j. They can communicate with each other as

the neighbor nodes if rij ≤ r(n).
• A free-space model in uncontested environments is used.
• DSR control packets are not included in our model. For this reason, we assume stationary

nodes (avoiding broken routes and route error packets) and do not use the first 50 sec of
simulation results (avoiding route setup duration with route request and reply packets).

• According to IEEE 802.11, we have seven retry limits for a packet transmission. We
assume no packet dropping in our model. Therefore, at most after six transmission
collisions, a packet will be transmitted.

• Each interfering neighbor node of a source or destination freezes its backoff counter as
soon as detecting RTS or CTS packets. We do not consider noises. Because of these two
assumptions, after receiving CTS by the source node, transmission will be done without
any collision or problem. Therefore, the number of CTS and ACK packets are equal to the
number of transmitted data packet per hop. Collisions may effect only on the number of
RTS packets.

4.3 Queuing Network Model
An M/M/1 queue is used in our model. It is assumed that the arrivals occur at rate λ according
to a Poisson process and the service times have an exponential distribution with parameter μ.
There are no buffer or population size limitations and the service discipline is First Come, First
Served (FCFS). To analyze the M/M/1 queue, we need to know only the mean arrival rate λ
and the mean service rate μ in jobs per unit time. The mean service rate can be obtained by μ =
1/E[S] (S is the service time of the server).
Definition 3: Utilization factor of the server: ρ = λ / μ [8]
Definition 4: Probability of zero job in the system: P0 = 1 - ρ [8]

Each node and its neighbors within the interference range must compete for access to the
medium. When a node gets the right to use the medium, its neighbors that have a packet to
send, must freeze their backoff counter and wait for medium to be free. We need to obtain this
freezing time to calculate the service time of each node. For this reason, we consider the
medium as the server and the interfering range’s nodes as the customers in the queue. In the
service discipline of the server (the medium) each node with the backoff counter equal to zero
will have access to the server.

In the traffic model, each node could be a source, a destination or a relay node. The packet
generation process at each node is an independently and identically distributed Poisson
process and the number of connections (packet flows) is constant and equal to nn. The arrival
rate in jobs per unit time for each connection is λj (1 ≤ j ≤ nn). The mean data packet length
(Ldata) is the sum of data packet size of DSR, DSR header, the mean number of hops multiplied
by four bytes (DSR packets include the route in their headers), and MAC header. The size of
each 2ACK packet is equal to L2ACK bits and the headers of network and MAC layers are
included in L2ACK, RTS, CTS, and ACK. The channel bit rate is constant and equal to W. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5161

parameters of the queuing network model summarized in Table 1.
Before calculating the new parameters of the model, we need to obtain some basic

parameters. To obtain the mean number of hops (E[HOP]), the method of [7] is used in this
paper. Other basic parameters are explained in definitions below.
Definition 5: The mean number of neighbors (E[ζr]) in range r:

𝐸𝐸[𝜉𝜉𝑟𝑟] = 𝑁𝑁.𝑟𝑟2�−4𝑟𝑟(𝑋𝑋+𝑌𝑌)+8𝑟𝑟�√2−1�+3𝜋𝜋(𝑋𝑋𝑋𝑋)�
3(𝑋𝑋𝑋𝑋)2

 [7].

Definition 6: The mean random distance per hop: 𝐸𝐸[𝑟𝑟𝑖𝑖] = 7.𝑟𝑟(𝑛𝑛)
9

 [7]

Table 1. Network model parameters
N Number of nodes
nn Number of connections
S Service time of the server
µ Service rate of the server
ρ Utilization factor of the server
λ Arrival rate of the server
λj Arrival rate of each connection
λi Arrival rate of each node

r(n) Transmission range
c(n) Detection range
i(n) Interfering range
ξr Number of neighbors in range r
ri Distance per hop

HOP Number of hops between a source and a destination
Hi Number of hidden neighbors of node i
TD Time duration to send a full data packet
TB Backoff time
W Channel bit rate
PC Probability of occurrence of collision between a node

and its hidden neighbors
P0 Probability of zero job in the system

Hdata Header size of data packet
Ldata Data packet size (headers included)

L2ACK 2ACK packet size (headers included)
LACK ACK packet size (headers included)

Lconfirm Confirmation size
R2ACK Ratio of the number of 2ACK packets to the number of

total data and 2ACK packets
CRTS Number of RTS packets per each data or 2ACK packet
OHOP Overhead per hop for each data packet
Cpkt Number of data and 2ACK packets per hop

ORatio Overhead ratio

4.4 Mean Number of Hidden Neighbors
In wireless networks, each node has three different ranges:
• The transmission range (r(n)) is mainly determined by transmission power and radio

propagation properties.
• The carrier sensing range (c(n)) is usually determined by the antenna sensitivity.

5162 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

• The interfering range (i(n)) is the range within which a node in receiving mode can be
interfered by another transmission, leading to a collision at receiver.

The first two above-mentioned ranges are constant. However, the third one depends on the
distance between the sender and the receiver. Note that the transmission power level assumed
to be constant. Nodes within the interference range of a receiver are called hidden neighbors.
Here, a receiver sends a CTS packet to the sender (as the response to the received RTS packet),
if no any of its hidden neighbors are transmitting a packet.

We need to obtain the mean number of hidden neighbors to calculate the collision
probability. For this purpose, we must obtain the interfering range and use this range for
calculating the area of hidden neighbors.
Lemma 1: Hi is the number of hidden neighbors of node i. Then

𝐸𝐸[𝐻𝐻𝑖𝑖] = 𝐸𝐸�𝜉𝜉1.78×𝐸𝐸�𝑟𝑟𝑖𝑖�
� − 1 (1)

Proof: Using this usual assumption that the threshold of signal to noise ratio
(SNR_THRESHOLD) equals to 10 and the mean distance between senders and receivers
equals to E[ri] (Definition 6), The interfering range will be equal to 1.78 × 𝐸𝐸[𝑟𝑟𝑖𝑖] [17].
Therefore, using Definition 5, the mean number of nodes in this range equals to 𝐸𝐸�𝜉𝜉1.78×𝐸𝐸[𝑟𝑟𝑖𝑖]�.
Note that one of these nodes is the sender and other nodes are hidden neighbors.

4.5 Overhead Analysis
Lemma 2: R2ACK is the ratio of the number of 2ACK packets to the number of total data and
2ACK packets. Then

𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 = �
2(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] − 1)
3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻])− 2 2𝐴𝐴𝐴𝐴𝐴𝐴

0 𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (2)

Proof: Each data packet traverses E[HOP] to reach a destination and according to 2ACK
method, each node on the route, except the first two nodes, must send back a 2ACK packet and
each 2ACK packet traverses two hops. The number of nodes on the route is equal to the
number of hops plus one. Therefore, (2) is proved. If we use DSR or PIGACK, we will not
have 2ACK packets.
Lemma 3: LACK is the length (bytes) of ACK packet in MAC layer. Then

𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 2𝐴𝐴𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴𝐴𝐴 + 1 + ��
2𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] − 1
𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] � 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3)

where Lconfirm = �16 B PIGACK_U
48 B PIGACK

Proof: DSR and 2ACK use standard ACK packets, but PIGACK has standard ACK fields plus
some new fields. We assume no packet dropping in the network, so each node (except
destinations) must forward the received packet and send back PIGACK packet. Therefore, the
number of confirmations in each PIGACK is equal to two (one for received packet and the
other for previously transmitted packet). However, destinations only must send back one
PIGACK. Therefore, the mean number of confirmations is equal to �2𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]−1

𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]
� 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and

for each confirmation we have NodeID (four bytes), PID (four bytes), and MAC (40 bytes for
PIGACK and eight bytes for PIGACK_U). Besides, we have a new field CConfirm in each
PIGACK packet that needs one byte.
Lemma 4: 𝜆𝜆𝑖𝑖 is arrival rate in jobs per unit time for each node. Then

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5163

𝜆𝜆𝑖𝑖 =

⎩
⎨

⎧
(∑ 𝜆𝜆𝑗𝑗) × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑁𝑁 𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(∑ 𝜆𝜆𝑗𝑗) × (3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2)𝑛𝑛𝑛𝑛
𝑗𝑗=1

𝑁𝑁 2𝐴𝐴𝐴𝐴𝐴𝐴
 (4)

Proof: The number of sending (transmitting by the source node) and forwarding (transmitting
by the intermediate nodes) per each packet of each connection is equal to the mean number of
hops. Therefore, the total arrival rate of the network is (∑ 𝜆𝜆𝑗𝑗) × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛

𝑗𝑗=1 . However,
according to 2ACK method and proof of Lemma 3, we must add (∑ 𝜆𝜆𝑗𝑗) × 2(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] −𝑛𝑛𝑛𝑛

𝑗𝑗=1
1) for 2ACK method. Therefore, the total arrival rate for 2ACK is equal to (∑ 𝜆𝜆𝑗𝑗) ×𝑛𝑛𝑛𝑛

𝑗𝑗=1
(3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2) and the mean of arrival rate for each node is (4).
Lemma 5: TD is the time duration to send a full data packet. Then

𝑇𝑇𝐷𝐷 = ���(𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿2𝐴𝐴𝐴𝐴𝐴𝐴) + �(1 − 𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴) × 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��+ 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴�

/ (𝑊𝑊/8)� + 3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(5)

Proof: According to IEEE 802.11 and the fact that the packet is a 2ACK packet with the
probability of R2ACK, and is a data packet with the probability of (1- R2ACK) and by using
Lemma 2 and 3, we will obtain (5).
Lemma 6: S is the service time of the server. Then

𝐸𝐸[𝑆𝑆] = (𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑃𝑃𝐶𝐶 �𝐸𝐸[𝑇𝑇𝐵𝐵] +
𝑅𝑅𝑅𝑅𝑅𝑅

(𝑊𝑊/8) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� (6)

Proof: According to the IEEE 802.11 protocol, the medium is given to a node for transferring a
packet (TD from Lemma 5) after a backoff time (E[TB] from definition 2). The next packet will
be sent after DIFS from the last sending packet. Therefore, each packet needs E[TB] + TD +
DIFS to be served. (See Fig. 2)

Fig. 2. Backoff mechanism of 802.11 MAC.

Theorem 1: PC is the probability of collision between the source node’s packets and the hidden
neighbors’ packets. Then

𝑃𝑃𝐶𝐶 =
𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖(𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

1 − �𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖 �𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑅𝑅𝑅𝑅𝑅𝑅
(𝑊𝑊/8) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷��

 (7)

Proof: we would like to know the probability of sending packet by hidden neighbors. P0 is the
probability of zero job in the system. According to Definition 4, 1 − 𝑃𝑃0 = 𝜌𝜌 is the probability
of at least one job in the system. The simultaneous transmission by a hidden node and the
source node makes a collision at the destination node. Therefore, PC is equal to the probability
of at least one hidden neighbor’s job in the system (𝜌𝜌). Using this fact that 𝜇𝜇 = 1

𝐸𝐸[𝑆𝑆]
, Definition

3,Lemma 1, and Lemma 4 we have:

5164 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

𝑃𝑃𝐶𝐶 =
𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖

𝜇𝜇
= 𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖𝐸𝐸[𝑆𝑆] (8)

using Lemma 6:
𝑃𝑃𝐶𝐶 = 𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖�(𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑃𝑃𝐶𝐶(𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)� (9)

Theorem 2: CRTS is the number of RTS packets per each data packet (or 2ACK packet)
transmission over one hop. Then,
 𝐹𝐹(0) = 2, 𝐹𝐹(1) = 1 + (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(0)), …, 𝐹𝐹(𝑛𝑛) = 1 + (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(𝑛𝑛 −
1)) (2 ≤ 𝑛𝑛 ≤ 5), and 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] = (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(5)).
Proof: according to IEEE 802.11 protocol, a packet will be dropped after seven unsuccessful
retries. We assume no packet dropping in our model. Therefore, we must include six collision
possibilities and in the last retry the packet must be transmitted. In each retry step, the packet is
sent by the probability of (1-PC) (one RTS is sent), obtained by Theorem 1, and a collision may
occur by the probability of PC (previous RTS is wasted and new one must be sent). F(0) is the
last retry that includes one wasting RTS because of the last collision and one new RTS that the
packet will be sent after this RTS.
Lemma 7: OHOP is the overhead per hop for each data packet. Then
𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] × 𝑅𝑅𝑅𝑅𝑅𝑅 + �(1− 𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴) ×𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�+ (𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿2𝐴𝐴𝐴𝐴𝐴𝐴) + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 (10)
where Hdata is the header size of data packets (all headers included in Hdata).
Proof: For transmitting each data packet (or 2ACK packet), a node must send 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] × 𝑅𝑅𝑅𝑅𝑅𝑅,
receive a CTS, send the packet (if the packet is a data packet so the overhead is its header, but
if it is a 2ACK packet, the whole packet is overhead), and receive an ACK packet (normal
ACK packet size or our new ACK packet used in our new method). Equation (10) uses
Theorem 2, Lemma 2, and Lemma 3.
Lemma 8: Cpkt is the number of data and 2ACK packets per hop. Then

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧�𝜆𝜆𝑗𝑗 × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]

𝑛𝑛𝑛𝑛

𝑗𝑗=1

 𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

�𝜆𝜆𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗=1

× (3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2) 2𝐴𝐴𝐴𝐴𝐴𝐴

(11)

Proof: According to the proof of Lemma 2 and 4, (11) will be proved.
Corollary: ORatio is the overhead ratio. Then

𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻

∑ 𝜆𝜆𝑗𝑗 × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛
𝑗𝑗=1 × (𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (12)

Proof: According to Lemma 7 and 8, the overhead per hop is equal to 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻. The
denominator of equation is equal to the sum of data packet (without headers) per hop.
In the next Section we will compare our analytical results with those obtained from
simulations.

5. Simulations
In the simulations, a version of network simulator (NS-2) is used. DSR and MAC 802.11
modules are modified to simulate PIGACK and 2ACK methods. Note that DSR and 2ACK
methods use standard MAC 802.11, but PIGACK uses a modified version of that. The traffic
and scenario patterns are randomly made using "cbrgen" and "setdest" tools of NS-2. Note that
"setdest" uses uniform distribution for node places and random waypoint model for the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5165

movement of nodes. We use five traffic and five scenario patterns (25 simulation runs) for
each simulation result. The simulation parameters are summarized in Table 2.

First, the comparison between analytical and simulation results according to the
assumption of analytical model are explained and then, the simulation results for a real
network by considering the mobility, DSR routing packets, and assumptions in Section 3.1,
are given.

Fig. 3. Packet delivery ratio as a function of

misbehaving nodes ratio.

Fig. 4. Overhead ratio as a function of misbehaving

nodes ratio.
Table 2. Simulation parameters

N 80
Simulation area 1000 m × 1000 m
Simulation time 100 sec
r(n) 250 m
c(n) 550 m
nn 20
λj 1
W 11 Mbps
Data packet size 512 B
Ldata 607.32 B
L2ACK 134 B
RTS (all headers are included) 44 B
CTS (all headers are included) 38 B
ACK (all headers are included) 38 B
SlotTime 20 µs
SIFS 10 µs
DIFS 50 µs
CWmin 32

Table 3. Comparing the overhead ratio obtained from analytical results with those obtained from

simulations
 Simulation results Analytical results

DSR 0.43 0.42
PIGACK_U 0.5 0.49

PIGACK 0.62 0.61
2ACK 1.16 1.13

5166 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

5.1 Comparing Analytical Results with Simulation Results
Table 3 shows the comparison between analytical and simulation results for calculating
overhead ratio. We used the assumptions introduced in Section 4.2 in the simulations. The
values of parameters in Table 3 were used in analytical results for this comparison.

5.2 Simulation Results
In this part we use the simulation parameters summarized in Table 2 with these differences:
• Node mobility is considered with the maximum speed and pause time equal to 20 m/sec

and 20 sec, respectively.
• Misbehaving nodes are considered 0, 10, 20, 30, and 40 percent of the whole nodes.

The following metrics are used to evaluate the performance of the DSR, PIGACK,
PIGACK_U, and 2ACK methods with regard to UDP traffic:
• Packet delivery ratio: The ratio of the number of data packets received by destination

nodes to the number of data packets sent by source nodes.
• Overhead ratio: The ratio of the amount of routing packets (route request, route reply,

route error, and 2ACK) and MAC control packets (RTS, CTS, ACK, and PIGACK) per
hop (headers are included) to the amount of data packets per hop. Note that in the overhead
ratio used in analytical model in Section 4, we assumed no routing packet and the network
was stationary. However, in this section we assume that we have a MANET with DSR
routing packets.

5.2.1 Packet Delivery Ratio
In Fig. 3 we compare the packet delivery ratio as a function of misbehaving node ratio. The
misbehaving node ratio ranges from 0 (all nodes are trustworthy) to 40 (40% of nodes are
misbehaving). Here, we observe that increasing the number of misbehaving nodes reduces the
packet delivery ratio. As expected, PIGACK and PIGACK_U methods have shown a much
better performance in packet delivery ratio compared to 2ACK and DSR methods.

There are two reasons of low packet delivery ratio of 2ACK. (1) Lack of detecting
misbehaving node (it detects misbehaving link) lets a misbehaving node exist still in different
routes used by the source node. (2) Lack of informing other nodes to prevent the presence of
detected misbehaving node on the routes. Because of this reason, each source node must detect
each misbehaving link by itself.

5.2.2 Overhead Ratio
In Fig. 4 we compare the overhead ratio of the methods as a function of misbehaving node
ratio. The higher overhead in the all methods except the DSR is due to the transmission of
extra acknowledgment packets (2ACK) or extra information in ACK packets of MAC layer
(PIGACK and PIGACK_U). When a misbehaving node is detected, the source node must use
other routes for packet transmission and this process may need new routing packets to find
new routes. Because of this reason, the overhead of 2ACK and our methods are increased with
the misbehaving nodes ratio. However, DSR does not detect the misbehaving nodes so it does
not need to find new routes. Besides, increasing the misbehaving nodes will decrease the
probability of broken route because they truncate the route and packet route errors may be
created only by nodes between sources and misbehaving nodes not between sources and
destinations and this is the reason of decline in the overhead of DSR as shown in Fig. 4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5167

5.3 One More Comparison Using Real Circumstance Example
2ACK had the minimum overhead between acknowledgment-based methods and we found
that PIGACK has less overhead in comparison with 2ACK. So we can say that PIGACK has
the minimum overhead between all acknowledgment-based methods.

To the best of our knowledge, previous acknowledgment-based methods used misbehaving
link detection technique like [1], [2], [10], [13], [14]. Therefore, we can also claim that
PIGACK has the best packet delivery ratio between acknowledgment-based methods when we
do not have collusion among misbehaving nodes. We have two reasons for this claim:
1) Misbehaving node detection instead of misbehaving link detection.
2) Informing neighbors of misbehaving nodes.

We use a simple network example, shown in Fig. 5, for better understanding. The
square-shaped nodes are the sources and the circular shaped nodes are the destinations. Node
13 is a malicious node that drops all data packets. Misbehaving link detection methods may try
all three routes containing node 13 for sending packets from node 11 to node 15. Note that
node 1 also may use node 13 to send packets to node 25. Therefore, each source node should
detect the misbehaving node by itself and this detection may need to test all links containing
the misbehaving node.

On the other hand, in PIGACK method when node 12 detects node 13 as a malicious node,
node 12 informs its neighbors (nodes 6, 7, 8, 13, 18, 17, 16, and 11) so these neighbors will not
use node 13 on a path to a destination. In fact, one time misbehavior detection is enough for at
least half of the sources.

Fig. 5. Simple network example.

Therefore, PIGACK method has the minimum overhead and maximum packet delivery

ratio in comparison with other acknowledgment-based methods. Also we know that
acknowledgment-based methods are more accurate than monitoring-based methods because
the overhearing technique is not likely to be accurate as explain in [3].

6. Conclusion
In this paper a special lightweight acknowledgement-based method, named PIGACK, is
developed that uses ACK packets of MAC 802.11, instead of adding new ACK packets to the
network layer, to piggyback confirmations from a receiver to a sender in the same
transmission duration that the sender sends a data packet to the receiver. According to the
analytical and simulations results, the proposed method considerably decreases the routing
overhead and increases the packet delivery ratio compared to the well-known method (2ACK).

5168 Heydari et al.: Lightweight Acknowledgement-Based Method to Detect Misbehavior in MANETs

In the future work, we will investigate how to arm PIGACK to resist collusion
misbehaving nodes that make collusion blackhole and slander attacks in MANETs.

References
[1] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens, “ODSBR: An on-demand

secure Byzantine resilient routing protocol for wireless ad hoc networks,” ACM Trans. Inf. Syst.
Secur., vol. 10, no. 4,pp. 1–35 , Jan. 2008. Article (CrossRef Link)

[2] K. Balakrishnan, J. Deng, and P.K. Varshney, “TWOACK: Preventing Selfishness in Mobile Ad
Hoc Networks,” in Proc. of IEEE WCNC, pp. 2137-2142, 2005. Article (CrossRef Link)

[3] R.V. Boppana and X. Su, “On the Effectiveness of Monitoring for Intrusion Detection in Mobile
Ad Hoc Networks,” IEEE Trans. Mobile Comput., vol. 10, no. 8, pp. 1162–1174, 2011.
Article (CrossRef Link)

[4] S. Buchegger and J. Y. Boudec, “Performance analysis of the CONFIDANT protocol: cooperation
of nodes: Fairness in dynamic ad-hoc networks,” in Proc. of MobiHOC, pp. 226–236, 2002.
Article (CrossRef Link)

[5] C. Chang, J. Lin, and F. Lai, “Trust-group-based authentication services for mobile ad hoc
networks,” in Proc. of ISWPC ’06, pp. 37–40, 2006. Article (CrossRef Link)

[6] T. Chen, O. Mehani, and R. Boreli, “Trusted routing for VANET,” in Proc. of ITST ’09, pp. 647–
652, 2009. Article (CrossRef Link)

[7] V. Heydari, and S.M. Yoo, “Mean Number of Hops in Flooding-Based Ad Hoc Networks,”
Submitted to Inf. Process. Lett.,2015

[8] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling,” Wiley- Interscience, New York, 1991.
Article (CrossRef Link)

[9] T. Krovetz, “RFC 4418: UMAC: Message Authentication Code using Universal Hashing,” 2006.
Article (CrossRef Link)

[10] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan, “An acknowledgment-based approach for
the detection of routing misbehaviour in MANETs,” IEEE Trans. Mobile Comput., vol. 6, no. 5, pp.
536–550, 2007. Article (CrossRef Link)

[11] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad Hoc
Networks,” in Proc. of MobiCom, pp. 255–265, 2000. Article (CrossRef Link)

[12] A. A. Pirzada, A. Datta, and C. McDonald, “Incorporating trust and reputation in the DSR protocol
for dependable routing,” Computer Communications, vol. 29, no.15, pp. 2806–2821, 2006.
Article (CrossRef Link)

[13] M. Shakshuki, N. Kang, and T. R. Sheltami, “EAACK—A Secure Intrusion-Detection System for
MANETs,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1089–1098, 2013.
Article (CrossRef Link)

[14] H. M. Sun, C. H. Chen, and Y. F. Ku, “A novel acknowledgment-based approach against collude
attacks in MANET,” Expert Systems with Applications, vol. 39, no. 9, pp. 7968–7975, 2012.
Article (CrossRef Link)

[15] E. Winjum, P. Spilling, and O. Kure, “Trust Metric Routing to Regulate Routing Cooperation in
Mobile Wireless Ad Hoc Networks,” in Proc. of Wireless Conference 2005-European wireless, pp.
1–8, 2005. Article (CrossRef Link)

[16] H.Xia, Z. Jia, X. Li, L. Ju, and E. H.-M. Sha, “Trust prediction and trust-based source routing in
mobile ad hoc networks,” Ad Hoc Networks, vol. 11, no. 7, pp. 2096–2114, 2013.
Article (CrossRef Link)

[17] K. Xu, M. Gerla, and S. Bae, “How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc
networks,” in Proc. 2002 IEEE GLOBECOM, pp. 72–76, Nov. 2002. Article (CrossRef Link)

[18] A.C.-C. Yao and Y. Zhao, “Online/Offline Signatures for Low-Power Devices,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 2, pp. 283–294, 2013. Article (CrossRef Link)

http://dx.doi.org/10.1145/1284680.1341892
http://dx.doi.org/10.1109/WCNC.2005.1424848
http://dx.doi.org/10.1109/TMC.2010.210
http://dx.doi.org/10.1145/513800.513828
http://dx.doi.org/10.1109/ISWPC.2006.1613623
http://dx.doi.org/10.1109/itst.2009.5399276
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471503363.html
https://www.ietf.org/rfc/rfc4418.txt
http://dx.doi.org/10.1109/TMC.2007.1036
http://dx.doi.org/10.1145/345910.345955
http://dx.doi.org/10.1016/j.comcom.2005.10.032
http://dx.doi.org/10.1109/TIE.2012.2196010
http://dx.doi.org/10.1016/j.eswa.2012.01.118
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5755319
http://dx.doi.org/10.1016/j.adhoc.2012.02.009
http://dx.doi.org/10.1109/GLOCOM.2002.1188044
http://dx.doi.org/10.1109/TIFS.2012.2232653

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015 5169

Vahid Heydari received a Bachelor of Science from the University of Science and
Culture and a Master of Science from Payame Noor University in computer engineering
in Tehran, Iran. He is a PhD student in electrical and computer engineering and MS
student in cybersecurity simultaneously at the University of Alabama in Huntsville. His
research interests include mobile ad-hoc, sensor, and vehicular network security and
moving target defense. He is a student member of ACM, IEEE Computer Society and
Communications Society.

Seong-Moo Yoo is an Associate Professor of Electrical and Computer Engineering at
the University of Alabama in Huntsville (UAH). Before joining UAH, he was an
Assistant Professor at Columbus State University, Columbus, Georgia –USA. He earned
MS and PhD degrees in Computer Science at the University of Texas at Arlington. His
research interests include computer network security and wireless network routing. He
has co-authored over 90 scientific articles in refereed journals and international
conferences. He is a senior member of IEEE and a member of ACM.

