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Abstract 
 

Mobile Ad hoc NETworks (MANETs) are the best choice when mobility, scalability, and 
decentralized network infrastructure are needed. Because of critical mission applications of 
MANETs, network security is the vital requirement. Most routing protocols in MANETs 
assume that every node in the network is trustworthy. However, due to the open medium, the 
wide distribution, and the lack of nodes’ physical protection, attackers can easily compromise 
MANETs by inserting misbehaving nodes into the network that make blackhole attacks. 
Previous research to detect the misbehaving nodes in MANETs used the overhearing methods, 
or additional ACKnowledgement (ACK) packets to confirm the reception of data packets. In 
this paper a special lightweight acknowledgement-based method is developed that, contrary to 
existing methods, it uses ACK packets of MAC layer instead of adding new ACK packets to 
the network layer for confirmations. In fact, this novel method, named PIGACK, uses ACK 
packets of MAC 802.11 to piggyback confirmations from a receiver to a sender in the same 
transmission duration that the sender sends a data packet to the receiver. Analytical and 
simulation results show that the proposed method considerably decreases the network 
overhead and increases the packet delivery ratio compared to the well-known method (2ACK). 
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1. Introduction 

When mobility and scalability are of vital importance, wireless networks are always 
preferred. In critical mission applications like military conflict or emergency recovery, Mobile 
Ad hoc NETworks (MANETs) are the best choice because of having a decentralized network 
infrastructure. MANETs rely on the benevolence of nodes within the network to forward 
packets from a source node to a destination node (multi-hop forwarding). Because of critical 
mission applications of MANETs, network security is one of the most important requirements. 
Unfortunately, due to the open medium and the lack of nodes’ physical protection, attackers 
can easily capture and compromise nodes to achieve their goals. In particular, most routing 
protocols in MANETs assume that every node in the network is trustworthy and presumably 
not malicious. So, attackers can easily compromise MANETs by inserting misbehaving nodes 
into the network. A misbehaving node is a node that cooperates in route finding phase and 
forwards all control packets (such as route request, route error, and route reply) correctly, but 
silently drops all data packets. Many research efforts have been devoted to detect the 
misbehaving nodes in MANETs that can be classified into two categories: monitoring-based 
methods and acknowledgment-based methods. The main problem with monitoring-based 
methods is that the overhearing method is unable to determine accurately the misbehaving 
nodes because of transmission instability in wireless networking environments that have been 
explained in [3]. The acknowledgment-based method solves the problems of 
monitoring-based methods by using additional ACK packets to confirm the reception of data 
packets. However, this performance improvement has an additional cost which is the overhead 
made by these ACK packets. 

When a method adds one extra packet to the network layer, the method is actually adding at 
least four extra packets (RTS, CTS, Data, ACK), according to IEEE 802.11 protocol, to the 
MAC layer. Note that in MAC layer, IEEE 802.11 protocol uses mandatory ACK packets to 
confirm the reception of transmitted data packets. Therefore, in this paper a special 
lightweight acknowledgement-based method, named PIGACK, is developed that on the 
contrary to existing methods, it uses ACK packets of MAC layer instead of adding new ACK 
packets to the network layer for confirmations. In fact, this novel method uses ACK packets of 
MAC 802.11 to piggyback confirmations from a receiver to a sender in the same transmission 
duration that the sender sends a data packet to the receiver. In this method, a message 
authentication code is used to authenticate the sender of the packet. Analytical and simulation 
results show that the proposed method considerably decreases the network overhead and 
increases the packet delivery ratio compared to the well-known method (2ACK [10]). 

Our Contributions–We develop the PIGACK method for detecting and isolating 
misbehaving nodes. Compared to state-of-the-art, PIGACK provides the following additional 
features: 
• Misbehaving node detection instead of misbehaving link detection: PIGACK can detect 

misbehaving nodes and prevent using any links that include them (increase in packet 
delivery ratio). 

• Informing other source nodes by informing the neighbors (at least half of them) of the 
newly misbehaving node detected to prevent using this misbehaving node by other source 
nodes (increase in packet delivery ratio). 
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• Decrease in routing overhead: PIGACK uses ACK packets of MAC 802.11 to piggyback 
confirmations from a receiver to a sender in the same transmission duration that the sender 
sends a data packet to the receiver. Therefore, PIGACK does not use any extra ACK 
packets. 

Paper Organization– The rest of this paper is organized as follows. Related work is 
covered in Section 2. Proposed PIGACK method is introduced in Section 3 including attack 
types. Section 4 and 5 cover analytical model and simulation. Finally, conclusion is explained 
in Section 6. 

2. Related Work 
In this section, previous methods, to detect and mitigate malicious nodes in MANETs, are 
explained. As above-mentioned, these methods can be classified into two main categories; 
monitoring-based methods and acknowledgment-based methods. We introduce some 
important methods of each category and explain their advantages and disadvantages. 

2.1 Monitoring-Based Methods 
The main idea of monitoring-based methods is to exploit wireless medium nature that each 
transmission can be heard by one-hop neighbors. In these methods a sender places itself in a 
promiscuous mode after transmitting a packet to overhear the retransmission by the 
forwarding node. Using this method, a node can know whether the packet, which has been sent 
to its neighbor, is indeed forwarded or not. Marti et al. [11] proposed two extensions to the 
DSR protocol, Watchdog and Pathrater. The Watchdog is based on promiscuous mode 
operation of the nodes to detect misbehaving nodes. Pathrater uses the knowledge from 
Watchdog to choose a path without any misbehaving nodes. Buchegger and Boudec [4] 
proposed CONFIDANT, an extension to the DSR which adds the reputation system and the 
trust manager to the Watchdog and Pathrater mechanisms. When misbehaving nodes are 
detected via Watchdog, an alarm is sent to the other nodes, defined as friends, to isolate the 
misbehaving nodes from the network. Winjum et al. [15] described a mechanism that uses a 
trust metric for routing. This method is based on detection of routing information sent by 
trusted nodes or sent by other nodes in the network. Each node should store two routing tables, 
one for trusted routes and another for unreliable routes. Pirzada et al. [12] used trust and 
reputation in the DSR protocol. The trust value calculated in the promiscuous mode is used to 
select a trusted route without misbehaving nodes. But in this method a wrong recommendation 
may occur and be used by other nodes. Chang et al. [5] used distributed authentication 
authorities which employ distributed trusted groups for the authentication process. However, 
this method works in the dynamic MANET with high delay. Chen et al. [6] employed a 
distributed trusted routing framework that authenticates messages, nodes and routes. But this 
method needs the certificate authority. Xia et al. [16] presented a dynamic trust prediction 
model to evaluate the trustworthiness of nodes, which is based on the nodes’ historical 
behaviors, as well as the future behaviors via the prediction of extended fuzzy logic rules 
prediction. 

The base of all above-mentioned methods is the trust degree of each node resulted from the 
promiscuous mode operation of the nodes. In other words, each node promiscuously listens to 
its wireless medium,  catches all packets in its antenna range and sends these packets to the 
network layer, which saves all of them in the table and uses a watchdog timer to detect the 
misbehavior of the one-hop neighbors. However, the overhearing technique is not likely to be 
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accurate for MANETs due to varying noise levels, varying signal propagation characteristics 
in different directions, and interference from competing transmissions [3]. 

2.2 Acknowledgment-Based Methods 
These methods are based on acknowledgments for packets delivery confirmation. 
Balakrishnan et al. [2] proposed a network-layer acknowledgment-based scheme, called 
TWOACK, to detect misbehaving nodes. The TWOACK is based on the Watchdog method; 
however, it does not use the overhearing technique (the promiscuous mode). It sends two-hop 
acknowledgment in the reverse direction to confirm that the intermediate nodes cooperated in 
the packet forwarding. The TWOACK resolved some problems of the promiscuous mode such 
as ambiguous collisions, receiver collisions and the limited transmission power. Liu et al. [10] 
proposed 2ACK scheme that uses acknowledgments like the original TWOACK scheme. Two 
major differences between them are as follows: 
1) The 2ACK scheme uses an authentication mechanism to avoid tampering of the 2ACK 

packets, whereas the TWOACK scheme does not use authentication. 
2) The intermediate nodes in the 2ACK scheme may only send a fraction of 2ACK packets 

with the tradeoff of increased delay in misbehavior detection (more packet dropping). 
Therefore, the 2ACK scheme may have less overhead than the TWOACK method because 
in the TWOACK scheme the intermediate nodes send the whole TWOACK packets for 
every data packet. Note that we will use 2ACK packets for all received data packets to 
achieve the best performance of 2ACK (minimum delay in misbehavior detection) in our 
analysis and simulation.  

The shortcomings with the mentioned acknowledgement-based methods are as follows:  
1) Message overhead: both methods have overhead messages (2ACK and TWOACK 

packets).  
2) The 2ACK scheme cannot detect “false alarms”. The 2ACK waits a certain time to receive 

ACK packet; however, sometimes, because of congestion or link fail detection time, a link 
(a pair of nodes) may be reported as a misbehaving link. In this situation the 2ACK does 
not have any method to exonerate this link. In the worst case, “intentional false alarms” 
(slander attacks) may occur. Assume that we have n1, n2, n3, n4, n5, n6, n7 on the path. If 
n3 receives the ACK packet of n5, but sends a false alarm to n1, the link n4-n5 will be 
saved as a misbehaving link. However, neither n4 nor n5 is a misbehaving node. By this 
attack n3 can accuse all links between its neighbors and their neighbors. 

Some other methods, mentioned below, claimed that not only can detect blackhole attacks 
but also are able to detect collusion blackhole attacks due to collusive misbehaving nodes 
which cooperate in the route discovery, but refuse to forward data packets and do not disclose 
the misbehavior of each other. Note that we assume no collusion among misbehaving nodes in 
our method. 

Awerbuch et al. [1] proposed an on-demand secure routing protocol (ODSBR) to identify 
misbehaving links and collusion blackhole attacks. In ODSBR, audited nodes acknowledged 
audited packets back to the source. Then the source performs a binary search to identify the 
misbehaving link. The main problem of the ODSBR is explained in this example: Suppose in 
ODSBR a misbehaving node drops all data packets except the packets that contain probes for 
one of the next nodes, only the data packets contain probes will reach the destination node. 
Therefore, the packet delivery ratio cannot exceed 50%. 

Sun et al. [14] proposed a scheme, called NACK, which adopts an acknowledgment-based 
approach and compares timestamps to resist collusion attacks. The NACK scheme, similar to 
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the TWOACK and the 2ACK schemes, sends two-hop acknowledgments in the reverse 
direction (NACK packets) to confirm that the intermediate nodes cooperated in the packet 
forwarding. For this goal, the NACK scheme uses a timestamp comparison and an additional 
route between source nodes and destination nodes to detect malicious nodes. The NACK 
method uses time synchronization techniques and assumed that the second route does not have 
any misbehaving node. 

Shakshuki et al. [13] proposed a hybrid scheme, called EAACK, to detect collusion 
blackhole attacks which includes three phase. First of all, the destination must send an 
end-to-end acknowledgement packet (ACK) to the source node. If the source node does not 
receive the ACK packet, it starts the second phase, where EAACK uses the TWOACK to 
detect two neighbor nodes as misbehaving nodes. However, the source node does not 
immediately trust the misbehavior report. When the second phase is finished, the source node 
starts the third phase. On this phase, the source node uses a second route and asks the 
destination whether it received the removed packet or not. This phase helps the source node to 
detect false misbehaving reports. The EAACK, like the NACK, assumed that the second route 
is available and does not have any malicious nodes. The main problem of the EAACK is 
similar to the ODSBR that a malicious node can do partial dropping without being recognized. 

Two main common problems of above-mentioned acknowledgment-based methods are: 
1) Misbehaving link detection instead of misbehaving node detection: These methods cannot 

detect a misbehaving node. They can only determine two neighbor nodes and cannot 
detect which of them is misbehaving. By the error reports from one of the intermediate 
nodes, the source node detects the link between two nodes as a misbehaving link, but a 
link cannot be misbehaving, in fact, anyone of the two end nodes of a link may be 
misbehaving. The source node will not use this link in the future, but due to lack of 
accurate detection of the misbehaving node, the node may be used in another path by the 
source node. Therefore, a misbehaving node can be used for more than one time without 
being recognized. In fact, a misbehaving node can be placed on different paths equal to the 
number of its neighbors. 

2) When a misbehaving link is detected, an alarm will be sent to the source node. All 
intermediate nodes between the reporter and the source node as well as the source node 
will be informed of this link. However, a new source node which was not informed must 
detect this misbehaving link by itself, which consumes time and decreases the packet 
delivery rate. In fact, the 2ACK does not have any method to inform other source nodes of 
misbehaving links detected. 

In this paper we try to solve the above-mentioned problems. Therefore, our goals are: 
decreasing the network overhead, detecting false alarms, detecting misbehaving nodes instead 
of misbehaving links, and informing other source nodes by informing the neighbors (at least 
half of them) of misbehaving node detected. 

3. Proposed PIGACK Method 

3.1 Assumptions 
• DSR is the protocol used for network layer. 
• There is no collusion among misbehaving nodes.  
• Each node has a unique ID and cannot be spoofed.  
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• A misbehaving node is a node that cooperates in route finding phase and forwards all 
control packets (such as route request, route error, and route reply) correctly, but silently drops 
all data packets. Each node in a path may be malicious except source and destination nodes 
which are assumed to be trusted.  

• A suspicious node is a node that was reported as a misbehaving node by another node. 
However, it already sent the PIGACK packet of its next node to the neighbors (and source in 
new route) to exonerate itself. If a node is detected two times as a suspicious node (reported by 
different nodes), it will be marked as a misbehaving node. 

• By default, each node has a table and for every node in the network it has an entry with 
four fields: its ID, its public key (or symmetric key), malicious flag, and reporter. The 
malicious flag is zero by default and if it is detected that the node is misbehaving, this flag will 
be two. This flag will be one if the node is detected as a suspicious node. The reporter field is 
the node ID of the node that reports this misbehavior. 

• Each node has a data structure. Each entry include: PreNodeID, NextHopNodeID, 
SecondHopNodeID, Cpkts, Cmis, and a list that contained PID, Send, State, Timeout, 
Confirmation. For node B, as an example, on the route {S, A, B, C, D}, PreNodeID is A’s ID, 
NextHopNodeID is C’s ID and SecondHopNodeID is D’s ID. PreNodeID for S is zero 
(because S is the source). NextHopNodeID for D and SecondHopNodeID for C are zero 
(because D is the destination). Cpkts is a counter of forwarded data packets and Cmis is a counter 
of missed data packets. PID is the packet ID of received data packet. Received confirmation of 
next node in a PIGACK packet is saved on Confirmation field and Send field will be set when 
saved confirmation is forwarded to the previous node. State is zero when sending a new packet 
and Timeout (timeout period) is set. When next hop node’s confirmation is received, State will 
be set to one and after receiving confirmation of the second-hop node, it will be set to two and 
Timeout will be reset. 

• Each PIGACK packet contains confirmations that the number of them is determined 
by Cconfirm (1 ≤ Cconfirm  ≤ maximum number of packets waited for confirmation). Each 
confirmation includes three fields: NodeID, PID, and MAC. MAC is the message 
authentication code created by the node that its ID is NodeID and PID demonstrates the ID of 
the received data packet by this node. 

We add one field to the route error packet of DSR named Malicious. If this field is set, the 
next node of this error producer is a misbehaving node. Malicious is zero for a normal route 
error packet. 

3.2 Proposed Method 
According to IEEE 802.11, an ACK packet must be sent by the receiver to confirm the 
reception of the packet. Our goal is piggybacking some information to these ACK packets of 
MAC layer instead of using ACK packets of network layer. Hereinafter, we use “PIGACK” as 
the ACK packet of MAC layer which contains confirmations. Each node when sends a data 
packet and receives PIGACK packet must save the next node’s confirmation (included in the 
received PIGACK) and send back with its confirmation for the next packet sent from the 
previous node inside a new PIGACK packet. In fact, each node when receives a data packet 
must send back a PIGACK packet that includes: 

1) The confirmation of reception of this packet created by this node, and 
2) The confirmation of the previous packet created by the next node to prove its honesty. 
This idea works well in a network without any congestion so only one packet may be 

waited for confirmation in each node. Therefore, sometimes a node may not have any ready 
confirmation of its next node to send back to the previous node or may have more than one 
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confirmation ready to send back. Therefore, we add Cconfirm to PIGACK packet to specify the 
number of confirmation included in this packet. PIGACK method can be summarized in the 
pseudocode as follows: 
A. Pseudocode of PIGACK Method 

For all algorithms: 
Require: Path includes [PreNodeID, NextHopNodeID, SecondHopNodeID] obtained from packet header. 
Require: Entry of Path in the data structure of this node. 
Require: List of (PID, Send, State, Timeout, Confirmation) for Entry 
A.1 Sending a data packet: 

1:     if Entry is empty then 
2:          Entry = new entry for this Path in data structure 
3:          List ← Ø, Cpkts ← 0, Cmis ← 0 
4:     end if 
5:     Cpkts ++ 
6:     add new entry to List of this Entry 
7:     PID ← packet ID, Send ← 0, State ← 0 
8:     Timeout ← maximum delay per 2-hops + current time 
 

A.2 Receiving a data packet and sending a PIGACK packet: 
1:     if Entry is empty then 
2:          Entry = new entry for this Path in data structure 
3:          List ← Ø, Cpkts ← 0, Cmis ← 0 
4:     end if  
5:     prepare PIGACK packet and insert ACK fields to it 
6:     prepare new confirmation 
7:     NodeID ← ID of this node, PID ← received packet ID, MAC ← sign (NodeID, PID) by private key 
8:     insert confirmation into PIGACK 
9:     Cconfirm ++ 
10:   for each stored confirmation in List do  
11:        if send equals to zero then 
12:             add stored confirmation to PIGACK 
13:             Cconfirm ++,  Send ← 1 
14:        end if 
15:   end for 
 

A.3 Receiving a PIGACK packet: 
1:     if MAC is not valid or Cconfirm equals to zero then 
2:          prepare route broken alarm for upper layer 
3:          Malicious ← 0 
4:     else 
5:          find entry of List for this Path where PID = pachet ID 
6:          store received confirmation to the entry of List  
7:          state ← 1 
8:          if SecondHopNodeID equals to zero then 
9:               state ← 2     // the next node is destination so this node should not wait for the second hop node 
10:        end if 
11:        if PreNodeID equals zero then 
12:             send ← 1     //this node is a source so should not send back confirmations 
13:        end if 
14:        for each extra confirmation in PIGACK do 
15:             if MAC is verified by SecondNodeID’s key then 
16:                  find entry of List where its PID equals to confirmation’s PID 
17:                  State ← 2 
18:       Timeout ← 0 
19:             end if 
20:        end for 
21:   end if 
22:   for each PID in List with State < 2 do 
23:        if current time > Timeout and Timeout does not equal to zero then 
24:             Cmis ++ 
25:             Remove this entry from List 
26:        end if 
27:   end for 
28:   if Cmis/Cpkts > threshold for Entry then 
29:        prepare route broken alarm for upper layer 
30:        Malicious ← 1 
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31:        remove Entry from data structure 
32:   end if 
 

Nodes have a table for each Path (specified by the previous node, the next hop node, and 
the second hop node). When a node receives a packet, the node adds its ID as a new entry to 
this table and calculates a timeout period for it. This timeout period is equal to the maximum 
waiting time to prepare the confirmation of the second hop node in the next hop node for this 
packet ID (so at the next sending packet, this confirmation will be received). Therefore, this 
timeout is equal to the maximum delay per two hops. If we use the 95-percentile of response 
time of each node as the delay per hop, we must specify a node as a misbehaving node if the 
ratio of Cmis/Cpkts is more than five percent (Threshold). If the timeout is reached and this node 
did not receive specific confirmation (the second hop confirmation) after sending a new packet 
to the next node, this node removes the table entry for that packet ID and increases Cmis. If the 
ratio of Cpkts to Cmis is more than specific Threshold, the next node ID will be stored as a 
misbehaving node and an error signal will be sent up from MAC layer to network layer that 
mentions this misbehavior and DSR will set Malicious field of the route error packet to inform 
other nodes of this misbehaving node. This route error packet will be sent to the source node IP 
address as the destination IP address (similar to normal DSR). However, the MAC layer will 
send it as a broadcast message. By this way, neighbors of this node will see this misbehaving 
node report, but only one of them (according to the header of DSR) will forward this packet to 
the source node. These neighbors and the source node will remove all routes in their caches 
that include the misbehaving node and set the malicious flag of this node to two and store the 
ID of its reporter in the table. Malicious flag in the table will be set to one if the misbehaving 
node proves its honesty so it will be change from a misbehaving node to a suspicious node.  

Using this technique that neighbors are informed of this misbehavior can increase the 
packet delivery ratio because they abstain to forward any packet from other sources to this 
misbehaving node.  

We put some change to DSR to behave correctly with its route request and route reply 
packet. When a node receives a route request or reply packet, it must check the route in the 
packet header (list of intermediate nodes saved on the header) and drop this packet if the route 
contains any pre-reported misbehaving node (or two neighbor suspicious nodes). 

We change the ACK packet format of MAC layer to include confirmations to it. As 
mentioned in assumptions (Section 3.1), the new packet (PIGACK packet) format includes: 
(see Fig. 1)  

• Standard ACK fields 
• Cconfirm (the number of confirmations included in this PIGACK) 
• One or more confirmations (NodeID, PID, and MAC) 

 

 
Fig. 1. PIGACK packet format (number of confirmation is equal to Cconfirm). 

3.3 Message Authentication Code 
We have two choices for message authentication code: 
1) Digital signature (default method for PIGACK): In this method we use elliptic curve 

online/offline digital signature [18] that needs 160 bits key size for security level 80 and 
creates signatures with the size of 320 bits. We assume offline key distribution method and 
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sequential packet ID started from a number mentioned in the first data packet (this packet 
does not need confirmations). Therefore, nodes will have enough time to prepare the next 
signature before receiving the next data packet. 

2) UMAC: This is the fastest reported message authentication code in the cryptographic 
literature used symmetric technique and a fast universal hash function [9]. The key size is 
128 bits (security level 80) and its output is 64 bits. We assume offline distribution shared 
keys so each node has shared keys of other nodes. The advantages of this method are: (1) 
smaller key size and output size and (2) fast enough to prepare the code during a short 
interframe space (SIFS) time interval (the time between receiving a packet and sending an 
ACK according to IEEE 802.11), so we do not need the sequential packet ID. On the other 
hand, its disadvantage is: having problem (similar to 2ACK) to detect attack type 2 and 3 
explained in Section 3.4. Hereinafter, we use PIGACK_U to refer to PIGACK that uses 
UMAC for message authentication codes. 

3.4 Attack Types 
In this section we explain different types of attacks related to our method. Assume a route from 
S to D includes A, B, and C ({S, A, B, C, D}). In these attack types, a node may only drop data 
packets (blackhole attack), create false alarms by sending wrong 2ACK (or PIGACK) to 
slander other nodes (slander attack), or participate with other misbehaving nodes (collusion 
attack). Note that we assume no collusion attacks in the network so we will not discuss 
collusion blackhole, slander, or framing attack. The attack types that we consider are as 
follows: 

Type 1. C does not send the 2ACK (or PIGACK) packet to B. 
2ACK: A does not receive 2ACK of C so it detects link B-C as a misbehaving link and 

reports this link to the source. Other links that include C may be used by this source and all the 
links may be used by other sources. 

PIGACK: A PIGACK packet contains the standard ACK packet and missing a PIGACK 
means missing the ACK, so B will send a route error packet according to IEEE 802.11 and 
DSR. On the other hand, if C sends a PIGACK without received D’s confirmation, B will 
detect C as a misbehaving node after the timeout period. 

Type 2. C sends its 2ACK (or PIGACK) packet to B with a wrong message authentication 
code (or wrong MAC of its confirmation inside PIGACK). 

2ACK: B cannot detect any problem because the packet is signed for A and according to the 
message authentication code used by 2ACK, only C and A can read this packet. Therefore, A 
will detect link B-C as a misbehaving link. 

PIGACK: B reads the digital signature of C and detects this fault and behaves similar to the 
situation that B did not receive the PIGACK of C (creates the route error packet). 

Type 3. A creates a false alarm and mentions B as a misbehaving node. 
2ACK: This problem cannot be solved in 2ACK because the misbehavior of A will not be 

detected by the source so the source will mention link B-C as a misbehaving link. 
PIGACK: B is one of the neighbors of A so B will see this false alarm and will send the 

PIGACK packet containing the confirmation of C as a broadcast message with Time To Live 
(TTL) equal to two to inform the neighbors of A and will send it in a new route to the source. In 
this situation, the neighbors and the source will mention both A and B as misbehaving nodes. 
Although B is detected wrongly as a misbehaving node, A isolates itself by doing this attack. 
Therefore, creating a false alarm is so costly for a misbehaving node. 
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4. Analytical Model for Overhead Ratio 
In this section we use an analytical model using queuing theory to obtain the network overhead 
ratio. For calculating the overhead in this paper, we focus on the overhead of both MAC and 
network layers instead of considering only the overhead of network layer because of two 
reasons: 

1) Some information is piggybacking to the ACK packet of MAC layer and 2ACK 
method adds new packets to the network layer, so we have to obtain the overhead from 
both layers. 

2) By focusing on the overhead of both MAC and network layers we can calculate the real 
overhead that includes all DSR and MAC headers, routing packets of DSR, and control 
packets of MAC layer. For example, when we add 2ACK packets to the network layer, 
we will have some additional overhead because of MAC control packets such as 
Request to Send (RTS), Clear to Send (CTS) and ACK packets. The number of RTS 
packets is not equal to the number of transmissions because of collisions. Therefore, 
adding a new packet or changing a packet size will change the network load and will 
have effect on the number of collisions and RTS packets so our real network overhead 
must be obtained by considering both layers instead of only the network layer. 

First of all, we will briefly introduce IEEE 802.11 MAC protocol and explain the 
assumptions and queuing network model. Then, we explain our overhead analysis.  

4.1 MAC Protocol 
IEEE 802.11 protocol defines a distributed coordination function (DCF), for sharing access to 
the medium, based on the CSMA/CA protocol. A node listens to the channel before the 
transmission to determine whether it is free or not. If the medium is sensed to be free for a DCF 
interframe space (DIFS) time interval, the transmission will proceed by sending a RTS packet 
to announce the upcoming transmission. When the destination node receives the RTS, it will 
send a CTS packet after a SIFS time interval. The source node is allowed to transmit the data 
packet only if it receives the CTS packet correctly. The destination node must send an ACK 
packet after a SIFS time on receiving the data packet. 

If the medium is busy or the node does not receive the CTS packet, the node must defer its 
transmission until the end of the current transmission and then must wait an additional DIFS 
interval and generate a random backoff time. This process minimizes collisions during 
contention between multiple nodes. 
Definition 1: Backoff time: backoff time = Random() × SlotTime where Random() is a 
pseudorandom integer among [0, CW-1] where CWmin ≤ CW ≤ CWmax and the SlotTime is one 
of the physical layer characteristics. 

The contention window (CW) parameter must take the CWmin as the initial value. Every 
node must maintain a Station Short Retry Count (SSRC) which must take an initial value of 
zero and its range is [0, 7]. After each unsuccessful transmission retry, the SSRC will be 
incremented and the CW will take the next value that is the result of multiplying the previous 
value by two. If the CW reaches the CWmax, it will not continue to increase. If the SSRC 
reaches the last number in its range, the packet will be dropped. After each successful 
transmission, the CW and SSRC will be reset to the initial value. 
Definition 2: The mean backoff time for the first try: E[TB] = (CWmin × SlotTime) / 2. 

Because we want to consider the medium as a server and nodes as its customer (will be 
explained in Section 4.3), our server always will have at least one customer that is in the first 
round (CWmin) of backoff time. Therefore, we use CWmin in Definition 2. 
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4.2 Assumptions 
• The total number of nodes in the network and the size of network must satisfy the network 

connectivity according to the node density of the network.  
• The network consists of N nodes that are distributed uniformly and independently over the 

area of X × Y. 
• We assumed, for simplicity, an equal transmission range denoted by r(n) and equal carrier 

sensing range denoted by c(n) for each node. 
• Let rij denote the distance between node i and j. They can communicate with each other as 

the neighbor nodes if rij ≤ r(n). 
• A free-space model in uncontested environments is used. 
• DSR control packets are not included in our model. For this reason, we assume stationary 

nodes (avoiding broken routes and route error packets) and do not use the first 50 sec of 
simulation results (avoiding route setup duration with route request and reply packets). 

• According to IEEE 802.11, we have seven retry limits for a packet transmission. We 
assume no packet dropping in our model. Therefore, at most after six transmission 
collisions, a packet will be transmitted. 

• Each interfering neighbor node of a source or destination freezes its backoff counter as 
soon as detecting RTS or CTS packets. We do not consider noises. Because of these two 
assumptions, after receiving CTS by the source node, transmission will be done without 
any collision or problem. Therefore, the number of CTS and ACK packets are equal to the 
number of transmitted data packet per hop. Collisions may effect only on the number of 
RTS packets. 

4.3 Queuing Network Model 
An M/M/1 queue is used in our model. It is assumed that the arrivals occur at rate λ according 
to a Poisson process and the service times have an exponential distribution with parameter μ. 
There are no buffer or population size limitations and the service discipline is First Come, First 
Served (FCFS). To analyze the M/M/1 queue, we need to know only the mean arrival rate λ 
and the mean service rate μ in jobs per unit time. The mean service rate can be obtained by μ = 
1/E[S] (S is the service time of the server). 
Definition 3: Utilization factor of the server: ρ = λ / μ [8] 
Definition 4: Probability of zero job in the system:  P0 = 1 - ρ [8] 

Each node and its neighbors within the interference range must compete for access to the 
medium. When a node gets the right to use the medium, its neighbors that have a packet to 
send, must freeze their backoff counter and wait for medium to be free. We need to obtain this 
freezing time to calculate the service time of each node. For this reason, we consider the 
medium as the server and the interfering range’s nodes as the customers in the queue. In the 
service discipline of the server (the medium) each node with the backoff counter equal to zero 
will have access to the server. 

In the traffic model, each node could be a source, a destination or a relay node. The packet 
generation process at each node is an independently and identically distributed Poisson 
process and the number of connections (packet flows) is constant and equal to nn. The arrival 
rate in jobs per unit time for each connection is λj (1 ≤ j ≤ nn). The mean data packet length 
(Ldata) is the sum of data packet size of DSR, DSR header, the mean number of hops multiplied 
by four bytes (DSR packets include the route in their headers), and MAC header. The size of 
each 2ACK packet is equal to L2ACK bits and the headers of network and MAC layers are 
included in L2ACK, RTS, CTS, and ACK. The channel bit rate is constant and equal to W. The 
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parameters of the queuing network model summarized in Table 1. 
Before calculating the new parameters of the model, we need to obtain some basic 

parameters. To obtain the mean number of hops (E[HOP]), the method of [7] is used in this 
paper. Other basic parameters are explained in definitions below. 
Definition 5: The mean number of neighbors (E[ζr]) in range r:  

𝐸𝐸[𝜉𝜉𝑟𝑟] = 𝑁𝑁.𝑟𝑟2�−4𝑟𝑟(𝑋𝑋+𝑌𝑌)+8𝑟𝑟�√2−1�+3𝜋𝜋(𝑋𝑋𝑋𝑋)�
3(𝑋𝑋𝑋𝑋)2

 [7]. 

Definition 6: The mean random distance per hop: 𝐸𝐸[𝑟𝑟𝑖𝑖] = 7.𝑟𝑟(𝑛𝑛)
9

 [7] 
 

Table 1. Network model parameters 
N Number of nodes 
nn Number of connections 
S Service time of the server 
µ Service rate of the server 
ρ Utilization factor of the server 
λ Arrival rate of the server 
λj Arrival rate of each connection 
λi  Arrival rate of each node 

r(n) Transmission range 
c(n) Detection range 
i(n) Interfering range 
ξr Number of neighbors in range r 
ri Distance per hop 

HOP Number of hops between a source and a destination 
Hi Number of hidden neighbors of node i 
TD Time duration to send a full data packet 
TB Backoff time  
W Channel bit rate 
PC Probability of occurrence of collision between a node 

and its hidden neighbors 
P0 Probability of zero job in the system 

Hdata Header size of data packet 
Ldata Data packet size (headers included) 

L2ACK 2ACK packet size (headers included) 
LACK ACK packet size (headers included) 

Lconfirm Confirmation size 
R2ACK Ratio of the number of 2ACK packets to the number of 

total data and 2ACK packets 
CRTS Number of RTS packets per each data or 2ACK packet 
OHOP Overhead per hop for each data packet 
Cpkt Number of data and 2ACK packets per hop 

ORatio Overhead ratio 

4.4 Mean Number of Hidden Neighbors 
In wireless networks, each node has three different ranges:  
• The transmission range (r(n))  is mainly determined by transmission power and radio 

propagation properties.  
• The carrier sensing range (c(n)) is usually determined by the antenna sensitivity.  
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• The interfering range (i(n)) is the range within which a node in receiving mode can be 
interfered by another transmission, leading to a collision at receiver. 

The first two above-mentioned ranges are constant. However, the third one depends on the 
distance between the sender and the receiver. Note that the transmission power level assumed 
to be constant. Nodes within the interference range of a receiver are called hidden neighbors. 
Here, a receiver sends a CTS packet to the sender (as the response to the received RTS packet), 
if no any of its hidden neighbors are transmitting a packet. 

We need to obtain the mean number of hidden neighbors to calculate the collision 
probability. For this purpose, we must obtain the interfering range and use this range for 
calculating the area of hidden neighbors. 
Lemma 1: Hi is the number of hidden neighbors of node i. Then  

𝐸𝐸[𝐻𝐻𝑖𝑖] = 𝐸𝐸�𝜉𝜉1.78×𝐸𝐸�𝑟𝑟𝑖𝑖�
� − 1 (1) 

Proof: Using this usual assumption that the threshold of signal to noise ratio 
(SNR_THRESHOLD) equals to 10 and the mean distance between senders and receivers 
equals to E[ri] (Definition 6), The interfering range will be equal to 1.78 × 𝐸𝐸[𝑟𝑟𝑖𝑖]  [17]. 
Therefore, using Definition 5, the mean number of nodes in this range equals to 𝐸𝐸�𝜉𝜉1.78×𝐸𝐸[𝑟𝑟𝑖𝑖]�. 
Note that one of these nodes is the sender and other nodes are hidden neighbors. 

4.5 Overhead Analysis 
Lemma 2: R2ACK is the ratio of the number of 2ACK packets to the number of total data and 
2ACK packets. Then 

𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 = �
2(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] − 1)
3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻])− 2            2𝐴𝐴𝐴𝐴𝐴𝐴 

0                   𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
 (2) 

Proof: Each data packet traverses E[HOP] to reach a destination and according to 2ACK 
method, each node on the route, except the first two nodes, must send back a 2ACK packet and 
each 2ACK packet traverses two hops. The number of nodes on the route is equal to the 
number of hops plus one. Therefore, (2) is proved. If we use DSR or PIGACK, we will not 
have 2ACK packets. 
Lemma 3: LACK is the length (bytes) of ACK packet in MAC layer. Then 

𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝐴𝐴𝐴𝐴𝐴𝐴                                                                  𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 2𝐴𝐴𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴𝐴𝐴 + 1 + ��
2𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] − 1
𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] � 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�          𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (3) 

where Lconfirm = �16 B  PIGACK_U
48 B       PIGACK 

Proof: DSR and 2ACK use standard ACK packets, but PIGACK has standard ACK fields plus 
some new fields. We assume no packet dropping in the network, so each node (except 
destinations) must forward the received packet and send back PIGACK packet. Therefore, the 
number of confirmations in each PIGACK is equal to two (one for received packet and the 
other for previously transmitted packet). However, destinations only must send back one 
PIGACK. Therefore, the mean number of confirmations is equal to �2𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]−1

𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]
� 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 

for each confirmation we have NodeID (four bytes), PID (four bytes), and MAC (40 bytes for 
PIGACK and eight bytes for PIGACK_U). Besides, we have a new field CConfirm in each 
PIGACK packet that needs one byte. 
Lemma 4: 𝜆𝜆𝑖𝑖 is arrival rate in jobs per unit time for each node. Then 
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𝜆𝜆𝑖𝑖 =  

⎩
⎨

⎧
(∑ 𝜆𝜆𝑗𝑗) × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑁𝑁            𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(∑ 𝜆𝜆𝑗𝑗) × (3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2)𝑛𝑛𝑛𝑛
𝑗𝑗=1

𝑁𝑁           2𝐴𝐴𝐴𝐴𝐴𝐴
 (4) 

Proof: The number of sending (transmitting by the source node) and forwarding (transmitting 
by the intermediate nodes) per each packet of each connection is equal to the mean number of 
hops. Therefore, the total arrival rate of the network is (∑ 𝜆𝜆𝑗𝑗) × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛

𝑗𝑗=1 . However, 
according to 2ACK method and proof of Lemma 3, we must add (∑ 𝜆𝜆𝑗𝑗) × 2(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻] −𝑛𝑛𝑛𝑛

𝑗𝑗=1
1) for 2ACK method. Therefore, the total arrival rate for 2ACK is equal to (∑ 𝜆𝜆𝑗𝑗) ×𝑛𝑛𝑛𝑛

𝑗𝑗=1
(3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2) and the mean of arrival rate for each node is (4). 
Lemma 5: TD is the time duration to send a full data packet. Then 

𝑇𝑇𝐷𝐷 = ���(𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿2𝐴𝐴𝐴𝐴𝐴𝐴) + �(1 − 𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴) × 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��+ 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴�

/ (𝑊𝑊/8)� + 3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

(5) 

 

 

Proof: According to IEEE 802.11 and the fact that the packet is a 2ACK packet with the 
probability of R2ACK, and is a data packet with the probability of (1- R2ACK) and by using 
Lemma 2 and 3, we will obtain (5). 
Lemma 6: S is the service time of the server. Then 

𝐸𝐸[𝑆𝑆] =  (𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷  +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑃𝑃𝐶𝐶 �𝐸𝐸[𝑇𝑇𝐵𝐵] + 
𝑅𝑅𝑅𝑅𝑅𝑅 

(𝑊𝑊/8) +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� (6) 

Proof: According to the IEEE 802.11 protocol, the medium is given to a node for transferring a 
packet (TD from Lemma 5) after a backoff time (E[TB] from definition 2). The next packet will 
be sent after DIFS from the last sending packet. Therefore, each packet needs E[TB] + TD + 
DIFS to be served. (See Fig. 2) 

 
Fig. 2. Backoff mechanism of 802.11 MAC. 

 
Theorem 1: PC is the probability of collision between the source node’s packets and the hidden 
neighbors’ packets. Then 

𝑃𝑃𝐶𝐶 =
𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖(𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷  +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

1 − �𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖 �𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑅𝑅𝑅𝑅𝑅𝑅 
(𝑊𝑊/8) +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷��

 (7) 

Proof: we would like to know the probability of sending packet by hidden neighbors. P0 is the 
probability of zero job in the system. According to Definition 4, 1 − 𝑃𝑃0 = 𝜌𝜌 is the probability 
of at least one job in the system. The simultaneous transmission by a hidden node and the 
source node makes a collision at the destination node. Therefore, PC is equal to the probability 
of at least one hidden neighbor’s job in the system (𝜌𝜌). Using this fact that 𝜇𝜇 = 1

𝐸𝐸[𝑆𝑆]
, Definition 

3,Lemma 1, and Lemma 4 we have: 
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𝑃𝑃𝐶𝐶 =
𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖

𝜇𝜇
= 𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖𝐸𝐸[𝑆𝑆] (8) 

using Lemma 6: 
𝑃𝑃𝐶𝐶 = 𝐸𝐸[𝐻𝐻𝑖𝑖] × 𝜆𝜆𝑖𝑖�(𝐸𝐸[𝑇𝑇𝐵𝐵] + 𝑇𝑇𝐷𝐷  +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝑃𝑃𝐶𝐶(𝐸𝐸[𝑇𝑇𝐵𝐵] +  𝑅𝑅𝑅𝑅𝑅𝑅 +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)� (9) 

Theorem 2: CRTS is the number of RTS packets per each data packet (or 2ACK packet) 
transmission over one hop. Then, 
 𝐹𝐹(0) = 2, 𝐹𝐹(1) = 1 + (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(0)), …, 𝐹𝐹(𝑛𝑛) = 1 + (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(𝑛𝑛 −
1))   (2 ≤ 𝑛𝑛 ≤ 5), and 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] = (1 − 𝑃𝑃𝐶𝐶) + 𝑃𝑃𝐶𝐶(𝐹𝐹(5)). 
Proof: according to IEEE 802.11 protocol, a packet will be dropped after seven unsuccessful 
retries. We assume no packet dropping in our model. Therefore, we must include six collision 
possibilities and in the last retry the packet must be transmitted. In each retry step, the packet is 
sent by the probability of (1-PC) (one RTS is sent), obtained by Theorem 1, and a collision may 
occur by the probability of PC (previous RTS is wasted and new one must be sent). F(0) is the 
last retry that includes one wasting RTS because of the last collision and one new RTS that the 
packet will be sent after this RTS. 
Lemma 7: OHOP is the overhead per hop for each data packet. Then 
𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] × 𝑅𝑅𝑅𝑅𝑅𝑅 + �(1− 𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴) ×𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�+ (𝑅𝑅2𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿2𝐴𝐴𝐴𝐴𝐴𝐴) + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴  (10) 
where Hdata is the header size of data packets (all headers included in Hdata). 
Proof: For transmitting each data packet (or 2ACK packet), a node must send 𝐸𝐸[𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅] × 𝑅𝑅𝑅𝑅𝑅𝑅, 
receive a CTS, send the packet (if the packet is a data packet so the overhead is its header, but 
if it is a 2ACK packet, the whole packet is overhead), and receive an ACK packet (normal 
ACK packet size or our new ACK packet used in our new method). Equation (10) uses 
Theorem 2, Lemma 2, and Lemma 3. 
Lemma 8: Cpkt is the number of data and 2ACK packets per hop. Then 

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧�𝜆𝜆𝑗𝑗 × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]

𝑛𝑛𝑛𝑛

𝑗𝑗=1

            𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

�𝜆𝜆𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗=1

× (3(𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]) − 2)           2𝐴𝐴𝐴𝐴𝐴𝐴

 

 

(11) 

Proof: According to the proof of Lemma 2 and 4, (11) will be proved. 
Corollary: ORatio is the overhead ratio. Then 

𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻

∑ 𝜆𝜆𝑗𝑗 × 𝐸𝐸[𝐻𝐻𝐻𝐻𝐻𝐻]𝑛𝑛𝑛𝑛
𝑗𝑗=1 × (𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (12) 

Proof: According to Lemma 7 and 8, the overhead per hop is equal to 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑂𝑂𝐻𝐻𝐻𝐻𝐻𝐻. The 
denominator of equation is equal to the sum of data packet (without headers) per hop. 
In the next Section we will compare our analytical results with those obtained from 
simulations. 

5. Simulations 
In the simulations, a version of network simulator (NS-2) is used. DSR and MAC 802.11 
modules are modified to simulate PIGACK and 2ACK methods. Note that DSR and 2ACK 
methods use standard MAC 802.11, but PIGACK uses a modified version of that. The traffic 
and scenario patterns are randomly made using "cbrgen" and "setdest" tools of NS-2. Note that 
"setdest" uses uniform distribution for node places and random waypoint model for the 
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movement of nodes. We use five traffic and five scenario patterns (25 simulation runs) for 
each simulation result. The simulation parameters are summarized in Table 2. 

First, the comparison between analytical and simulation results according to the 
assumption of analytical model are explained and then, the simulation results for a real 
network by considering the mobility, DSR routing packets, and assumptions in Section 3.1, 
are given. 

 
Fig. 3. Packet delivery ratio as a function of 

misbehaving nodes ratio. 

 
Fig. 4. Overhead ratio as a function of misbehaving 

nodes ratio. 
Table 2. Simulation parameters 

N 80 
Simulation area 1000 m × 1000 m 
Simulation time 100 sec 
r(n) 250 m 
c(n) 550 m 
nn 20 
λj 1 
W 11 Mbps 
Data packet size 512 B 
Ldata  607.32 B 
L2ACK 134 B 
RTS (all headers are included) 44 B 
CTS (all headers are included) 38 B 
ACK (all headers are included) 38 B 
SlotTime 20 µs 
SIFS 10 µs 
DIFS 50 µs 
CWmin 32 

 
Table 3. Comparing the overhead ratio obtained from analytical results with those obtained from 

simulations 
 Simulation results Analytical results 

DSR 0.43 0.42 
PIGACK_U 0.5 0.49 

PIGACK 0.62 0.61 
2ACK 1.16 1.13 
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5.1 Comparing Analytical Results with Simulation Results 
Table 3 shows the comparison between analytical and simulation results for calculating 
overhead ratio. We used the assumptions introduced in Section 4.2 in the simulations. The 
values of parameters in Table 3 were used in analytical results for this comparison. 

5.2 Simulation Results 
In this part we use the simulation parameters summarized in Table 2 with these differences: 
• Node mobility is considered with the maximum speed and pause time equal to 20 m/sec 

and 20 sec, respectively. 
• Misbehaving nodes are considered 0, 10, 20, 30, and 40 percent of the whole nodes. 

The following metrics are used to evaluate the performance of the DSR, PIGACK, 
PIGACK_U, and 2ACK methods with regard to UDP traffic:  
• Packet delivery ratio: The ratio of the number of data packets received by destination 

nodes to the number of data packets sent by source nodes. 
• Overhead ratio: The ratio of the amount of routing packets (route request, route reply, 

route error, and 2ACK) and MAC control packets (RTS, CTS, ACK, and PIGACK) per 
hop (headers are included) to the amount of data packets per hop. Note that in the overhead 
ratio used in analytical model in Section 4, we assumed no routing packet and the network 
was stationary. However, in this section we assume that we have a MANET with DSR 
routing packets. 

5.2.1 Packet Delivery Ratio 
In Fig. 3 we compare the packet delivery ratio as a function of misbehaving node ratio. The 
misbehaving node ratio ranges from 0 (all nodes are trustworthy) to 40 (40% of nodes are 
misbehaving). Here, we observe that increasing the number of misbehaving nodes reduces the 
packet delivery ratio. As expected, PIGACK and PIGACK_U methods have shown a much 
better performance in packet delivery ratio compared to 2ACK and DSR methods. 

There are two reasons of low packet delivery ratio of 2ACK. (1) Lack of detecting 
misbehaving node (it detects misbehaving link) lets a misbehaving node exist still in different 
routes used by the source node. (2) Lack of informing other nodes to prevent the presence of 
detected misbehaving node on the routes. Because of this reason, each source node must detect 
each misbehaving link by itself. 

5.2.2 Overhead Ratio 
In Fig. 4 we compare the overhead ratio of the methods as a function of misbehaving node 
ratio. The higher overhead in the all methods except the DSR is due to the transmission of 
extra acknowledgment packets (2ACK) or extra information in ACK packets of MAC layer 
(PIGACK and PIGACK_U). When a misbehaving node is detected, the source node must use 
other routes for packet transmission and this process may need new routing packets to find 
new routes. Because of this reason, the overhead of 2ACK and our methods are increased with 
the misbehaving nodes ratio. However, DSR does not detect the misbehaving nodes so it does 
not need to find new routes. Besides, increasing the misbehaving nodes will decrease the 
probability of broken route because they truncate the route and packet route errors may be 
created only by nodes between sources and misbehaving nodes not between sources and 
destinations and this is the reason of decline in the overhead of DSR as shown in Fig. 4. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, December 2015                                5167 

5.3 One More Comparison Using Real Circumstance Example 
2ACK had the minimum overhead between acknowledgment-based methods and we found 
that PIGACK has less overhead in comparison with 2ACK. So we can say that PIGACK has 
the minimum overhead between all acknowledgment-based methods. 

To the best of our knowledge, previous acknowledgment-based methods used misbehaving 
link detection technique like [1], [2], [10], [13], [14]. Therefore, we can also claim that 
PIGACK has the best packet delivery ratio between acknowledgment-based methods when we 
do not have collusion among misbehaving nodes. We have two reasons for this claim: 
1) Misbehaving node detection instead of misbehaving link detection. 
2) Informing neighbors of misbehaving nodes. 

We use a simple network example, shown in Fig. 5, for better understanding. The 
square-shaped nodes are the sources and the circular shaped nodes are the destinations. Node 
13 is a malicious node that drops all data packets. Misbehaving link detection methods may try 
all three routes containing node 13 for sending packets from node 11 to node 15. Note that 
node 1 also may use node 13 to send packets to node 25. Therefore, each source node should 
detect the misbehaving node by itself and this detection may need to test all links containing 
the misbehaving node. 

On the other hand, in PIGACK method when node 12 detects node 13 as a malicious node, 
node 12 informs its neighbors (nodes 6, 7, 8, 13, 18, 17, 16, and 11) so these neighbors will not 
use node 13 on a path to a destination. In fact, one time misbehavior detection is enough for at 
least half of the sources. 

 
Fig. 5. Simple network example. 

 
Therefore, PIGACK method has the minimum overhead and maximum packet delivery 

ratio in comparison with other acknowledgment-based methods. Also we know that 
acknowledgment-based methods are more accurate than monitoring-based methods because 
the overhearing technique is not likely to be accurate as explain in [3]. 

6. Conclusion 
In this paper a special lightweight acknowledgement-based method, named PIGACK, is 
developed that uses ACK packets of MAC 802.11, instead of adding new ACK packets to the 
network layer, to piggyback confirmations from a receiver to a sender in the same 
transmission duration that the sender sends a data packet to the receiver. According to the 
analytical and simulations results, the proposed method considerably decreases the routing 
overhead and increases the packet delivery ratio compared to the well-known method (2ACK). 
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In the future work, we will investigate how to arm PIGACK to resist collusion 
misbehaving nodes that make collusion blackhole and slander attacks in MANETs. 
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