• Title/Summary/Keyword: Minor-loop feedback compensator

Search Result 3, Processing Time 0.018 seconds

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

An Analytical Design Of A Feedback Regulator With Vector Input In A Discrete Linear Time Invariant Systems (벡터 인력을 갖는 이산선형시 불변시스템의 피이드백 조정기의 해석적 설계)

  • 고명삼;양해원
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.69-72
    • /
    • 1974
  • This paper deals with an analytical design of a feedback regulator with vector input is discrete linear time-invariant systems. We have derived some relations such that the eigenvalues of a system plant with vector input under the time-optimal control strategy can be arbitrarily changed by the characteristics of the minor loop compensator which is indroduced in the feedback path.

  • PDF

An Analytical Design of Feedback Regulator and Signal State Estimator in Discrete Linear Systems (이산 선형시스템에서의 피이드백 조정기 및 신호상태 추정기의 해석적 설계)

  • 고명삼
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.19-30
    • /
    • 1972
  • This paper deals with an analytic design of feedback regulator and signal state estimator in discrete linear systems. On the way of developing the deadbeat regulator, some necessary conditions for control policy have been derived, it is proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. We have derived some relations such that the eigenvalue of system plant can be arbitrarily changed by the characteristics of minor loop compensator which is introduced in feedback path. And also we show that the signal state estimator which estimates the state of given signal sequence must satisfy some conditions. Theorems and conclusions are described with some simplel nontrivial numerical examples and signal state tracking application problems.

  • PDF