• Title/Summary/Keyword: Mining water

Search Result 410, Processing Time 0.032 seconds

Comparison of Seasonal Pollutant Loads Estimated at Coal mining Area (광산(탄광)지역의 계절별 오염부하량 비교 분석)

  • Shin, Hyun-Jun;Shin, Min-Hwan;Seo, Ji-Yeon;Choi, Yong-Hoon;Won, Cheol-Hee;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1028-1032
    • /
    • 2009
  • 비교적 한정되고 정해진 구역에서 오염물질이 배출되는 것을 점오염이라고 하는 반면, 비점오염은 도시, 농지, 산지, 등 불특정 구역에서 오염물질을 발생시킨다. 점오염에 관한 오염관리가 체계적으로 시행되었던 이전과 달리 최근에는 비점오염에 대한 대책이 시급해짐에 따라 정부는 비점오염에 대한 중요성을 유념하여 한강수계를 대상으로 오염총량관리제를 시범적으로 실시하였다. 환경부는 기존 비점오염원 원단위 부하를 세분화 하여 오염총량제도의 정확도를 향상시키기 위해 노력하고 있다. 우리나라의 비점오염의 관한 연구 중 광산(탄광)지역의 관한 연구는 매우 적다. 본 연구는 광산(탄광)지역의 장기간의 유량 및 수질 모니터링을 통하여 계절별 배출되는 비점오염물질의 유량을 비교하고, ESTIMATOR 모델 방법으로 T-N과 T-P를 분석하였다. 본 연구를 통하여 광산(탄광)지역의 장기적인 모니터링 수행으로 비점오염부하 산정의 유용한 자료로 활용할 수 있을 것으로 판단된다.

  • PDF

Expansion Characteristics of Jeungpyun by Dry and Wet Milling Rice Flours (건식 및 습식제조 쌀가루로 제조한 증편의 팽화특성)

  • Kim, Young-In;Kim, Ki-Sook
    • Korean journal of food and cookery science
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 1994
  • This study was conducted to examine the expansion characteristics of Jeung pyun prepared by wet-milling and dry-mining rice flours. The fermented time was reduced when the added water was in the higher percentage. The Microstructure of Jelungpyun examined by SEM had a better quality when the added water was 80% for the Jeungpyun by wet-milling and 100% for Jeungpyun by dry-milling. Generally the Jeungpyun by wet-milling had a good fermentation than the Jeungpyun by dry-milling.

  • PDF

Rainfall Classification from a Dogye Coal Mining Area (도계 석탄광산 지역의 강우계급특성)

  • Seo, Ji-Yeon;Choi, Yong-Hun;Shin, Hyun-Jun;Won, Chul-Hee;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1211-1215
    • /
    • 2010
  • 국내의 석탄자원은 1989년부터 비경제 탄광은 폐광시키고 경제성 있는 탄광을 육성하는 석탄산업 합리화시책을 실시하여, 전국 343개의 탄광이 폐광되어 현재는 5개의 탄광만이 가행되고 있다. 이들 가행광산중 강원도 삼척시 도계읍에 위치한 채탄작업을 위한 갱구 입구의 작업지역(DCM, Dogye coal mine)을 선정하여 강우 유출수 모니터링을 시행하였다. DCM지역의 수문분석 결과 연강우량의 83%는 일 강우 80 mm 이하에서 발생하였다. 또한 연강우량의 50% 이상이 40 mm 이하의 강우계급에서 발생하고 있는 것으로 나타났다. 연간 강우횟수는 약 90회 정도 발생하고 있으며, 평균적으로 4일에 1회의 강우가 발생하였다. 또한 100 mm 이상의 강우도 연평균 강수량의 13.78%를 차지하고 있어 집중호우가 총 강우량에 미치는 영향이 작지 않음을 나타냈다. 비점오염의 배출은 강우량에 의해 영향을 많이 받기 때문에 기상이변으로 게릴라성 집중호우가 많이 발생하는 요즘 큰 강우사상에 대하여 많은 대비를 해야 할 것으로 판단되었다.

  • PDF

Numerical Simulations of Evolution of Mining-Pit (준설 웅덩이의 발달과정 모의)

  • Choi, Sung-Uk;Choi, Seong-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.165-169
    • /
    • 2012
  • 하천에서의 골재 채취는 일시적으로 홍수위를 낮추는 순기능도 있지만 하천형태학적으로 좋지 않은 영향을 줄 수도 있다. 하천에서 골재 채취로 인한 준설웅덩이의 회복에 필요한 시간 혹은 과정은 공학적으로 매우 중요하다. 본 연구에서는 시간에 따른 준설 웅덩이의 발달 과정을 모의할 수 있는 수치모형을 제시하였다. 제시된 수치모형은 준정류 가정에 기초하는데, 이는 흐름은 정상류이고 하도가 변하는 특성시간이 흐름에 비해 길다고 가정하는 것이다. 총유사량 공식으로 Engelund and Hansen (1967) 공식과 Ackers and White (1973) 공식을 이용하여 수치실험을 실시하였다. Engelund and Hansen 공식을 사용하였을 때, Parker (2004)에 제시된 준설 웅덩이의 되메움 과정을 정량적으로 유사하게 모의하는 것으로 나타났다. 제시된 모형의 적용성을 검토하기 위하여 선행 실내실험에 적용하였다. 전반적으로 준정류모형이 준설 웅덩이의 되메움과 전파과정을 잘 모의하는 것으로 확인되었다. 그러나 수치모형이 두부침식 현상을 잘 재현하지 못하여 재퇴적 이후의 하상파를 과소 산정하는 것으로 나타났다.

  • PDF

A Study on the removel of the water from the anthracite slurry by Oil Agglomeration Process(part 2) (Oil Agglomeration Process에 의한 무연탄 슬러리의 탈수에 관한 연구(제2보))

  • 오진석;신강호;조동성
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1995
  • When the slurry of water and coal which is produced from hydraulic coal mining was dehydrated by COM(Coal Oil Mixtue), the effects of flocculant were measured by light transmittance of supernatant liquid, The experimental results obtamed m this study are summarized as follows; The efficient flocculant is anionic flocculant(AllO), and in this case, the required concentration is about l00g/t. When diesel oil is used with flocculant, COM is formed in lower impeller speed than when only diesel oil is used. The amout of diesel oil required to form COM is 10% of that of coal.

  • PDF

Evaluating the Restoration of a Stream in an Abandoned Mine Land via Biomass Calculation of Benthic Macroinvertebrates

  • Mi-Jung Bae;Hyeon-Jung Seong;Seong-Nam Ham;Eui-Jin Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.415-420
    • /
    • 2022
  • It is essential that continual assessments of the impact of mine-derived water as a long-lasting burden on freshwater environments. Abundance-based evaluations of benthic macroinvertebrates have been conducted to evaluate anthropogenic disturbances and devise policies to reduce their impact. In this study, the status of a stream habitat was evaluated based on the body length and biomass weight of benthic macroinvertebrates of the family Baetidae. Following the renewal of the mining water treatment plant, the abundance of Baetidae assemblages recovered to a level comparable to that of a reference site. However, relatively low values were found for both body length and biomass weight in Baetidae species inhabiting the reddened streambed area, suggesting that the habitat has not yet been completely recovered despite the recovery of the abundance of the Baetidae assemblages. Therefore, continuous investigation and evaluation of this disturbed stream are necessary until their growth conditions of the habitat have functionally recovered.

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

Visualizing Spatial Information of Climate Change Impacts on Social Infrastructure using Text-Mining Method (텍스트마이닝 기법을 활용한 사회기반시설 기후변화 영향의 공간정보 표출)

  • Shin, Hana;Ryu, Jaena
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.773-786
    • /
    • 2017
  • This study was to analyze data of climate change impacts on social infrastructure using text-mining methodology, and to visualize the spatial information by integrating those with regional data layers. First of all, the study identified that the following social infrastructure; power, oil and resource management, transport and urban, environment, and water supply infrastructures, were affected by five kinds of climate factors (heat wave, cold wave, heavy rain, heavy snow, strong wind). Climate change impacts on social infrastructure were then analyzed and visualized by regions. The analysis resulted that transport and urban infrastructures among all kinds of infrastructure were highly impacted by climate change, and the most severe factors of the climate impacts on social infrastructure were heavy rain and heavy snow. In addition, it found out that social infrastructure located in Seoul and Gangwon-do region were relatively largely affected by climate change. This study has significance that atypical data in media was used to analyze climate change impacts on social infrastructure and the results were translated into spatial information data to analyze and visualize the climate change impacts by regions.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Using Artificial Neural Networks for Forecasting Algae Counts in a Surface Water System

  • Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.