• Title/Summary/Keyword: Mining water

Search Result 403, Processing Time 0.021 seconds

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Experimental research on the effect of water-rock interaction in filling media of fault structure

  • Faxu, Dong;Zhang, Peng;Sun, Wenbin;Zhou, Shaoliang;Kong, Lingjun
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-478
    • /
    • 2021
  • Water damage is one of the five disasters that affect the safety of coal mine production. The erosion of rocks by water is a very important link in the process of water inrush induced by fault activation. Through the observation and experiment of fault filling samples, according to the existing rock classification standards, fault sediments are divided into breccia, dynamic metamorphic schist and mudstone. Similar materials are developed with the characteristics of particle size distribution, cementation strength and water rationality, and then relevant tests and analyses are carried out. The experimental results show that the water-rock interaction mainly reduces the compressive strength, mechanical strength, cohesion and friction Angle of similar materials, and cracks or deformations are easy to occur under uniaxial load, which may be an important process of water inrush induced by fault activation. Mechanical experiment of similar material specimen can not only save time and cost of large scale experiment, but also master the direction and method of the experiment. The research provides a new idea for the failure process of rock structure in fault activation water inrush.

Effects of water saturation time on energy dissipation and burst propensity of coal specimens

  • Yang, Xiaohan;Ren, Ting;Tan, Lihai;Remennikov, Alex
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Water infusion has long been taken as an effective way to eliminate coal burst risk as coal properties can be loosen and soften by water infusion. However, not all industrial trials of water infusion for coal burst prevention have been necessarily effective in all situations as the effectiveness of this method can be affected by water infusion time, coal properties and the parameters of water injection. Hence, some fundamental issues including the effects of water infusion time on burst propensity and energy evolution need to be further discussed. In this paper, four groups of coal specimens with 0 day, 5 days, 10 days, and 15 days water saturation time are tested under uniaxial compression load with the application of AE monitoring. To comprehensively compare the burst behavior of coal specimens under different water saturation time, stress-strain curves, AE counts, fragmentation characteristics and burst propensity of these groups are analyzed. It was found by this research that sufficient water saturation can mitigate the burst behavior of coal samples while insufficient water infusion might cannot reach the burst mitigation aims.

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.

Case study of the mining-induced stress and fracture network evolution in longwall top coal caving

  • Li, Cong;Xie, Jing;He, Zhiqiang;Deng, Guangdi;Yang, Bengao;Yang, Mingqing
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • The evolution of the mining-induced fracture network formed during longwall top coal caving (LTCC) has a great influence on the gas drainage, roof control, top coal recovery ratio and engineering safety of aquifers. To reveal the evolution of the mining-induced stress and fracture network formed during LTCC, the fracture network in front of the working face was observed by borehole video experiments. A discrete element model was established by the universal discrete element code (UDEC) to explore the local stress distribution. The regression relationship between the fractal dimension of the fracture network and mining stress was established. The results revealed the following: (1) The mining disturbance had the most severe impact on the borehole depth range between approximately 10 m and 25 m. (2) The distribution of fractures was related to the lithology and its integrity. The coal seam was mainly microfractures, which formed a complex fracture network. The hard rock stratum was mainly included longitudinal cracks and separated fissures. (3) Through a numerical simulation, the stress distribution in front of the mining face and the development of the fracturing of the overlying rock were obtained. There was a quadratic relationship between the fractal dimension of the fractures and the mining stress. The results obtained herein will provide a reference for engineering projects under similar geological conditions.

Evaluation and characteristics of commercial Portable ground-water in Korea

  • Cho, Byong-Wook;Sung, Ig-Hwan;Choo, Chang-O;Lee, Byeong-Dae;Kim, Tong-Kwon;Lee, In-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.119-122
    • /
    • 1998
  • Chemical analysis, measurement of pumping rates of 60 production wells and depth to water tables of 57 monitoring wells were carried to protect depletion of water resources and deterioration of water quality for the commercial portable ground-water. Borehole depth of production well averages 149m(31 boreholes), casing depth is 28m(29 boreholes), production rate is 70 $m^3$/day and depth to water table of monitoring well is 23.26m, respectively. The geology of 60 wells can be divided into Daebo granite(20), Okchun metarmorphic complex(18), Precambrian granitic gneiss(15), Bulguksa granite(4), Cheju volcanics(2), Cretaceous sedimentary rock(1). Average electrical conductivity and pH are 152$\mu$S/cm, and 7.35, respectively. The contents of major cation and anion predominantly $Ca^{2+}$>N $a^{+}$>M $g^{2+}$> $K^{+}$ and HC $O_{3}$$^{-}$ >S $O_{4}$$^{2-}$>Cl ̄>F ̄. Water type is predominantly $Ca^{2+}$-HC $O_{3}$$^{-}$(81.7%). It's possible that water chemistry of some wells were affected not only by the geology of boreholes penetrated but by inflows of surface water or shallow ground-water. Therefore, it is strongly necessary to steadily monitor the water quality and hydrogeologic conditins of production wells.ells.ls.ells.

  • PDF

Water-blocking Asphyxia of N95 Medical Respirator During Hot Environment Work Tasks With Whole-body Enclosed Anti-bioaerosol Suit

  • Jintuo Zhu;Qijun Jiang;Yuxuan Ye;Xinjian He;Jiang Shao;Xinyu Li;Xijie Zhao; Huan Xu;Qi Hu
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2023
  • Background: During hot environment work tasks with whole-body enclosed anti-bioaerosol suit, the combined effect of heavy sweating and exhaled hot humid air may cause the N95 medical respirator to saturate with water/sweat (i.e., water-blocking). Methods: 32 young male subjects with different body mass indexes (BMI) in whole-body protection (N95 medical respirator + one-piece protective suit + head covering + protective face screen + gloves + shoe covers) were asked to simulate waste collecting from each isolated room in a seven-story building at 27-28℃, and the weight, inhalation resistance (Rf), and aerosol penetration of the respirator before worn and after water-blocking were analyzed. Results: All subjects reported water-blocking asphyxia of the N95 respirators within 36-67 min of the task. When water-blocking occurred, the Rf and 10-200 nm total aerosol penetration (Pt) of the respirators reached up to 1270-1810 Pa and 17.3-23.3%, respectively, which were 10 and 8 times of that before wearing. The most penetration particle size of the respirators increased from 49-65 nm before worn to 115-154 nm under water-blocking condition, and the corresponding maximum size-dependent aerosol penetration increased from 2.5-3.5% to 20-27%. With the increase of BMI, the water-blocking occurrence time firstly increased then reduced, while the Rf, Pt, and absorbed water all increased significantly. Conclusions: This study reveals respirator water-blocking and its serious negative impacts on respiratory protection. When performing moderate-to-high-load tasks with whole-body protection in a hot environment, it is recommended that respirator be replaced with a new one at least every hour to avoid water-blocking asphyxia.

Modelling the coupled fracture propagation and fluid flow in jointed rock mass using FRACOD

  • Zhang, Shichuan;Shen, Baotang;Zhang, Xinguo;Li, Yangyang;Sun, Wenbin;Zhao, Jinhai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.529-540
    • /
    • 2020
  • Water inrush is a major hazard for mining and excavation in deep coal seams or rock masses. It can be attributed to the coalescence of rock fractures in rock mass due to the interaction of fractures, hydraulic flow and stress field. One of the key technical challenges is to understand the course and mechanism of fluid flows in rock joint networks and fracture propagation and hence to take measures to prevent the formation of water inrush channels caused by possible rock fracturing. Several case observations of fluid flowing in rock joint networks and coupled fracture propagation in underground coal roadways are shown in this paper. A number of numerical simulations were done using the recently developed flow coupling function in FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that the shortest path between the inlet and outlet in joint networks will become a larger fluid flow channel and those fractures nearest to the water source and the working faces become the main channel of water inrush. The fractures deeper into the rib are mostly caused by shearing, and slipping fractures coalesce with the joint, which connects the water source and eventually forming a water inrush channel.

Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining (데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘)

  • Choi, Gee-Seon;Shin, Gang-Wook;Lim, Sang-Heui;Chun, Myung-Geun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1056-1061
    • /
    • 2009
  • This paper proposes a short-term water demand forecasting algorithm based on kalman filtering with data mining for sustainable water supply and effective energy saving. The proposed algorithm utilizes a mining method of water supply data and a decision tree method with special days like Chuseok. And the parameters of MLAR (Multi Linear Auto Regression) model are estimated by Kalman filtering algorithm. Thus, we can achieve the practicality of the proposed forecasting algorithm through the good results applied to actual operation data.