• Title/Summary/Keyword: Mining waste

Search Result 144, Processing Time 0.034 seconds

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

산성광산폐수 처리를 위한 반응벽체의 반응물질로서 산업부산물 적용에 관한 연구

  • 한완수;최재규;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.260-265
    • /
    • 2004
  • Acid mine drainage(AMD) is one of the most serious environmental concerns associated with the mining industry around the world. The objective of this study is to assess the potential of sewage sludge as a carbon source for sulfate reducing bacteria and waste lime and steel slag as a neutralize agent for acid mine drainage bioremediation for use in permeable reactive materials. The study was performed using synthetic AMD in six column experiments. The effluent solution was systematically analysed throughout the experiments. The results of the study indicated that sewage sludge, waste lime and steel slag were the most effective for the AMD treatment as a permeable reactive materials.

  • PDF

Snow Tunnelling Project at the South Pole (남극 극지점 기지에서의 얼음 터널 프로젝트)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • The United States Antarctic program (USAP) through its principal Support Contractor Raytheon polar Services Co. (RPSC), has recently finished a 3 years projects, almost 936m length of underground utility tunnels at Amundsen-Scott station. It accommodates the piping that conveys fresh water from current well sites, as well as waste water to repositories in abandoned wells. The under snow tunnels allow year-round access for system operations and maintenance.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

Efficient Recycling of Printed Circuit Boards from Disassembly/Separation Process of waste LCD TVs: Composition Analysis and Value-wise Classification (LCD TV 해체 시 발생하는 PCB의 효율적 재활용을 위한 구조 분석 및 등급별 분류)

  • Hong, Myung Hwan;Park, Kyung-Soo;Swain, Basudev;Kang, Lee-Seung;Suk, Han Gil;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.66-72
    • /
    • 2015
  • Various waste PCBs arose during disassembly of LCD TVs and monitors in which they originally functioned for transmission of imaging signal, power supply, and imaging control. In those functional PCBs, gold and copper are contained at far more acceptable level, exceeding mining grade ores. Those valuable metals and their contents widely vary with functionality and end use of PCBs. Therefore, compositional analysis of individual waste PCBs from disassembled LCD TVs and monitors were performed in the present study to classify them into three categories: high gold yield and low gold yield PCBs and those without gold contents. Besides, additional chemical analysis was made to reveal gold and copper contents in the waste PCBs arising from actual disassembly/separation of end-of-life LCD TVs and monitors.

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.

Investigation of Contaminated Waste Disposal Site Using Electrical Resistivity Imaging Technique (폐기물 처분장 오염지반조사를 위한 전기비저항 영상화 기법의 적용)

  • Jung Yunmoon;Woo Ik;Kim Jungho;Cho Seongjun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The electrical resistivity method, one of old and widely used geophysical prospecting methods, has extended its scope to civil & environmental engineering areas. The electrical resistivity imaging technique was performed at the waste disposal site located in Junju to verify the applicability to the environmental engineering area. The dipole-dipole array, with the dipole spacing of 10 m, was applied along eight survey lines. The field data were obtained under the control of automatic acquisition softwares and topographic effects were corrected during processing stage. The processed resistivity images show that very low resistivity develops inside the disposal site and the distribution of low resistivity is exactly in accord with the boundary of the site except the river side. The depth of low resistivity zones is deeper toward the river side, which is interpreted that there is a high possibility for contaminants to be scattered to the river. From resistivity images, it was feasible to deduce the depth of waste disposal as well as the horizontal/vertical distribution of the contaminated zone, which proved the applicability of the electrical resistivity imaging technique to the environmental engineering area.

  • PDF

Conceptual Design of a Cover System for the Degmay Uranium Tailings Site (Degmay 우라늄광산 폐기물 부지 복원을 위한 복토층 개념설계)

  • Saidov, Vaysidin;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.189-200
    • /
    • 2016
  • The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea (국내 인쇄회로기판의 재활용 상용화 기술 및 연구동향 분석)

  • An, HyeLan;Kang, Leeseung;Lee, Chan-Gi
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • Recently, the amount of electronic scrap is rapidly increasing due to the rapid growth of the electronics industry. Among the components of electronic scrap, the printed circuit board(PCB) is an important recycling target which includes common metals, precious metals, and rare metals such as gold, silver, copper, tin, nickel and so on. In Korea, however, PCB recycling technologies are mainly commercialized by some major companies, and other process quantities are not accurately counted. According to present situation, several urban mining companies, research institutes, and universities are conducting research on recovery of valuable metals from PCBs and/or reusing them as raw materials that is different from existing commercialization process developed by major companies. In this study, we analyzed not only current status of collection/disposal process and recycling of waste PCBs in Korea but also the trend of recycling technologies in order to help resource circulation from waste PCBs become more active.