폐광 부지에서 발생하는 대표적인 환경 문제는 산성으로 오염된 지표수와 지하수, 적재된 폐광석 및 광미, 채굴 활동으로 야기된 지반침하 현상을 들 수 있다. 이 논문은 광해 유형에 따라 재해 및 오염영역을 효율적으로 탐지했던 지구물리탐사방법들을 고찰하는데 있다. 시험 자료로서 토양오염, 산성광산배수, 지반침하, 인공차수막 파손 및 광미/폐광석 적치장을 각각 대표하는 네 개의 폐광 부지를 선택하였다. 자료 검증을 위해 물리탐사자료는 자료의 유형에 따라 시추자료(코어 샘플, 물리검층, 토모그래피 등)와 물 자료(수소이온농도, 전기전도도, 중금속원소 등)와 비교하였다. 토양오염 탐지에 있어서 낮은 전기비저항 이상대는 특히 구리, 납, 아연의 중금속 농도가 높은 지역과 부합된다. 산성광산배수의 유동 경로는 자연전위 곡선에서 음의 전위 이상대, 전기비저항자료에서의 저비저항 이상대, 지하레이더 자료에서의 얕은 투과깊이 영역으로 탐지되었다. 채굴적은 전기비저항 단면에서의 저비저항 이상대, 탄성파토모그래피에서 낮은 속도 영역, 물리검층곡선의 복합해석으로 특징되며, 정확한 위치는 코어자료와 시추공영상자료에서 잘 확인되었다. 침출수 유동을 차단하기 위해 설치된 인공차수막의 파손 구간은 전기비저항 자료에서의 국부적인 이상대로 정확히 탐지되며 매립된 폐석더미는 고비저항 이상대와 저속도 이상대로 특징된다.
오디션, 육아, 버라이어티 등 다양한 예능 프로그램들의 수가 점점 증가하고 있다. 특히 종합편성채널이 개국한 이후에 예능 시장 경쟁이 심화되고 있다. 그에 따라 시청률과 회차에 대한 연구의 필요성이 대두되고 있다. 본 연구의 목적은 예능 프로그램 시청률과 회차의 예측모형을 제시하고 주요요인을 살펴보는 데 있다. 모형 적합 시 선형회귀모형, 로지스틱 회귀모형, LASSO 회귀모형, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 머신 등과 같은 다양한 분석 방법을 고려하였다. 예능 시청률 예측 모형에서는 첫 회가 방영되기 전과 방영된 후 두 가지 모형을 적합하였고, 회차 예측 모형에서는 예능 시청률 예측 모형의 예측치를 추가 변수로 생성하여 모형을 적합하였다. 그 결과 첫 회 방영 전 예능 시청률 예측에서는 방송사, 이전 시즌 시청률, 시작 연도, 기사 수가 큰 영향을 주는 것으로 나타났다. 첫 회 방영 후 예능 시청률 예측에서는 첫 회 시청률, 방송사, 예능 유형이 중요한 변수로 나타났으며, 두 모형 모두 랜덤 포레스트 모형에서 가장 좋은 결과를 보였다. 예능 회차 예측에서는 평균 시청률 예측치, 시작 연도, 예능유형, 방송국 등이 중요한 변수로 나타났다.
웹2.0시대와 더불어 소셜미디어 서비스의 발달로 전통적인 여론형성의 기능이 매스미디어에서 소셜미디어로 일부 이동되었으며, 이런 현상은 계속 확대되고 있어, 정부 정책에 대한 소셜미디어 기반의 여론이 관심을 받고 있다. 특히, 교육정책은 다양한 이해관계자들이 존재하고, 정책의제 설정과정에서도 많은 의견의 충돌이 발생되기 때문에 정책을 수립함에 있어 대중의 여론을 파악하는 것이 더욱 중요하다고 할 수 있다. 본 연구는 교육정책관련 소셜미디어 서비스를 통해 작성된 문서들을 오피니언 마이닝 기법으로 분석하여, 교육관련 정책에 대한 대중의 여론탐색을 목적으로 하였다. 이를 위하여 소셜미디어 서비스를 통해 사용자들이 생산하는 교육정책 관련 문서들을 키워드 기반으로 수집하고, 토큰화 시킨 후 감성자질을 추출하고 감성사전으로부터 해당 문서의 감정을 점수화 하여, 특정 교육정책 키워드에 대한 대중의 여론을 탐색하였다. 그 결과 디지털교과서, 이러닝 등을 키워드로 하는 스마트교육 정책에 대해서는 긍정보다 부정적인 감정이 많은 것으로 나타났으며, 코딩교육, 컴퓨터적 사고 등을 키워드로 하는 소프트웨어 교육 정책에 대해서는 긍정적인 여론의 방향으로 나타났다. 자유학기제, 창의 인성교육 등을 키워드로 하는 일반 정책에 대해서는 부정적인 여론이 많은 것으로 나타났다. 또한 전체 분석 대상 문서 중에서 감정 자질이 전혀 추출되지 않은 문서가 20%나 되어 블로그나 트위터의 내용에 저자의 의견이 반영되지 않은 내용이 아직 일정 비율로 존재함을 알 수 있었다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.117-124
/
2013
연관성 규칙 탐사는 상당한 양의 데이터베이스에 내재되어 있는 항목들 간의 관련성을 파악하는 것으로 쇼핑몰, 보건 및 의료, 교육분야 등의 현장에서 많이 적용되고 있다. 이러한 연관성 규칙을 생성하기 위해 연관성 규칙 평가 기준인 지지도, 신뢰도, 향상도 등이 활용되고 있다. 이들 중에서 신뢰도가 연관성 평가 기준으로 가장 많이 활용되고는 있으나 항상 양의 값을 취하는 비대칭적 측도이기 때문에 항목 간에 연관성 규칙을 생성하는 데 어려움이 존재하게 된다. 이러한 문제를 해결하기 위해 본 논문에서는 주변 비율 전부를 포함한 확률적 흥미도 기반 유사성 측도를 연관성 평가 기준으로 활용하는 방안을 고려하였다. 이 측도들은 주변비율 전부와 교차표의 모든 항을 고려하여 연관성의 강도를 측정하는 측도이므로 나타나는 모든 정보를 충실히 반영해주는 측도라고 할 수 있다. 모의실험을 통해 확인한 결과, 모든 주변 비율을 고려한 확률적 흥미도 기반 유사성 측도 대부분이 기존의 연관성 평가 기준과 마찬가지로 연관성의 정도를 파악할 수 있는 동시에 부호를 포함하고 있어서 연관성의 방향도 알 수 있었다.
본 연구는 한국지능정보시스템학회의 고유한 연구영역을 파악하고자 지능정보연구 학술지에 최근 3년 동안 게재된 논문들을 대상으로 키워드를 수집하여 프로파일링 기법과 동시출현빈도를 분석하였다. 이를 통하여 지능정보시스템 연구의 정통성과 정체성을 밝히는 동시에 향후 추구해야할 연구영역을 제시하고자 한다. 연구 정체성에 대한 상대적 위치를 파악하기 위하여 한국지능정보시스템학회 뿐만 아니라 유사학회에 해당하는 한국경영정보학회 그리고 한국정보시스템학회의 키워드 및 연구방법론을 수집하여 비교하였다. 또한, 한국지능정보시스템학회에서 인공지능/데이터마이닝, 지능형인터넷, 지식경영에 대한 주요 분야를 중점적으로 다루고 있음을 고려할 때 각 분야의 대표적인 학회로 한국빅데이터서비스학회 및 한국빅데이터학회, 한국인터넷전자상거래학회, 한국지식경영학회의 연구 경향을 각각 비교 분석하였다. 키워드 분석 결과만을 요약하면, 한국지능정보시스템학회는 키워드 부문에서는 텍스트마이닝, 데이터 마이닝 및 추천시스템에 집중하고 있다는 것을 알 수 있었다. 인공지능/데이터마이닝 분야에서는 빅데이터 개념 자체와 감성분석에 초점을 두고 있고, 지능형인터넷 분야에서는 SNS와 구매의도, 신뢰, 기술수용모델에 집중하고 있었다. 지식경영 분야에서는 지식관리, 지식 공유 키워드에 집중함을 발견할 수 있었다. 더 나아가 한국지능정보시스템학회 뿐만 아니라 유사 연구 분야에서 생태계 전반적 융합 가능성을 진단해 보았다.
분류란 새로운 자료를 주어진 클래스 중의 하나로 구분하는 것으로 가장 일반적으로 사용되는 데이터마이닝 기법 중의 하나이다. 그중 메모리기반 추론(MBR : Memory-Based Reasoning)은 추론 규칙 없이 특징들의 최초의 벡터 형태에 의해 표현된 학습패턴을 단순히 저장한다. 그리고 분류 시에 새로운 자료가 메모리에 저장된 학습패턴들과의 거리를 계산하여 가장 가까운 거리에 있는 학습패턴의 클래스로 분류하는 기법이다. MBR 기법에서 학습패턴이 커지면 저장에 필요한 메모리의 크기도 커질 뿐만 아니라 추론을 위한 계산도 많아지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위한 대표적인 방법으로 초월평면을 이용하는 NGE 이론과 대표패턴을 추출하여 학습하는 FPA 기법과 RPA 기법 등을 들을 수 있다. 본 논문에서는 학습패턴 공간을 GINI-Index값을 이용하여 일련의 최적 분할점을 찾아 가변크기로 분할하는 동적분할평균(DPA : Dynamic Partition Averaging)기법을 제안하였다. 제안한 기법의 성능을 검증하기 위하여 MBR기법 중 널리 사용되는 k-NN 기법과 비교하였다. 제안한 기법이 k-NN기법에 비해 대표패턴 개수는 줄이고 분류성능은 유사하게 유지시킨 것을 보여주었다. 또한, 제안한 기법은 NGE 이론을 구현한 EACH 시스템과 대표패턴 기법인 FPA기법과 RPA기법 등과 비교하여 탁월한 분류 성능을 보여주었다.
최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.
클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.
우리나라는 세계적으로 배달음식 문화가 가장 많이 발달한 나라 중에 하나로 최근에는 일인가구의 증가와 배달앱 시장의 발달과 함께 그 성장 속도 또한 눈부시게 증가하고 있다. 따라서 배달음식 이용에 큰 영향을 미칠 것으로 예상되는 날씨와 날짜별 변수를 고려하여 시간대별 배달음식 이용건수를 예측함으로써 소비자와 생산자 모두에게 이익을 주는 예측모형을 찾고자 한다. 본 연구의 목적은 다양한 데이터마이닝 기법을 이용하여 2014년도 배달음식 통화건수를 예측하는데 있다. 예측에 사용되는 회귀 모형은 선형회귀모형, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 기계, 신경망, 로지스틱 회귀모형으로 총 6가지이다. 고려되는 배달음식 업종은 총 4가지(족발/보쌈정식, 중국음식, 치킨, 피자)로 크게 두 가지 방법을 이용하여 각 업종별 배달음식 이용건수를 예측하였다. 첫 번째 방법은 총 이용건수와 각 업종별 배달음식 이용비율을 곱하여 각 업종별 배달음식 이용건수를 예측하는 것이고, 두 번째 방법은 각 업종별 모형을 세워 각 업종별 배달음식 이용건수를 예측하는 방법이다. 최종적으로 선택된 모형은 방법 1에서는 신경망 모형과 선형회귀모형이며, 방법 2에서는 신경망 모형이었다. 방법 2보다는 방법 1로 구한 결과가 더 예측력이 좋은 것으로 나타났다.
최근 골프는 많은 사람들의 취미 생활로서 자리를 잡아가고 있으며 골프와 관련된 연구도 다양하게 이루어지고 있다. 본 연구에서는 데이터 마이닝 기법을 사용하여 PGA 투어에 참여하는 선수들의 평균스코어를 예측하고 스코어에 유의한 영향을 미치는 변수들을 제시하고자 한다. 그리고 추가적으로 4개의 PGA 투어 플레이오프에 대해 상위 10명, 상위 25명의 선수들을 예측하는 것을 목표로 한다. 우리는 다양한 선형/비선형 회귀분석 방법을 이용하여 평균스코어를 예측하는데, 선형회귀분석 방법으로는 단계적 선택법, 모든 가능한 회귀모형, 라소(LASSO), 능형회귀, 주성분회귀분석을 사용하였으며 비선형회귀분석 방법으로는 트리(CART), 배깅, 그래디언트 부스팅, 신경망 모형, 랜덤 포레스트, 최근접이웃방법(KNN)을 사용하였다. 대부분의 모형에서 공통적으로 선택된 변수들을 살펴보면 페어웨이의 단단함와 그린의 풀의 높이, 평균최대풍속이 높을수록 선수들의 평균스코어는 높아지며 반대로 한 번에 퍼팅을 성공시키는 횟수와 그린적중률 실패 후 버디나 이글로 점수를 만드는 scrambling 변수들, 그리고 공을 멀리 보낼 수 있는 능력을 나타내는 longest drive는 그 값이 높아짐에 따라 선수들의 평균스코어가 낮아지는 경향이 있음을 알 수 있었다. 11가지 모형 모두 테스트 데이터인 2015년 경기 결과를 예측하는데 낮은 오류율을 보였으나 배깅과 랜덤 포레스트의 예측률이 가장 좋았으며 두 모형 모두 상위 10명과 상위 25명의 랭킹을 예측할 때 상당히 높은 적중률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.