Rapidly obtaining the coverage characteristics of leaching solution in In-situ Leaching Area of Sandstone Uranium Mines is a necessary condition for optimizing well locations reasonably. In the presented study, the improved algorithm of the Fast Marching Method (FMM) was studied for rapidly solving coverage characteristics to replace the groundwater numerical simulator. First, the effectiveness of the FMM was verified by simulating diffusion characteristics of the leaching solution in In-situ Leaching Area. Second, based on the radial flow pressure equation and the interaction mechanism of the front diffusion of production and injection well flow field, an improved FMM which is suitable for In-situ Leaching Mining, was developed to achieve the co-simulation of production and injection well. Finally, the improved algorithm was applied to engineering practice to guide the design and production. The results show that the improved algorithm can efficiently solve the coverage characteristics of leaching solution, which is consistent with those obtained from traditional numerical simulators. In engineering practice, the improved FMM can be used to rapidly analyze the leaching process, delineate Leaching Blind Spots, and evaluate the rationality of well pattern layout. Furthermore, it can help to achieve iterative optimization and rapid decision-making of production and injection well locations under largescale mining area models.
Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.
In Webspace, mining traversal patterns is to understand user's path traversal patterns. On this mining, it has a unique characteristic which objects (for example, URLs) may be visited due to their positions rather than contents, because users move to other objects according to providing information services. As a consequence, it becomes very complex to extract meaningful information from these data. Recently discovering traversal patterns has been an important problem in data mining because there has been an increasing amount of research activity on various aspects of improving the quality of information services. This paper presents a Dynamic Link Recommendation (DLR) algorithm that recommends link sets on a Web site through mining frequent traversal patterns. It can be employed to any Web site with massive amounts of data. Our experimentation with two real Weblog data clearly validate that our method outperforms traditional method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.2C
/
pp.208-218
/
2006
In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.
Kim, N.B.;Woo, H.J.;Kim, Y.S.;Kim, D.K.;Kim, J.K.;Choi, H.W.;Park, K.S.
Analytical Science and Technology
/
v.7
no.4
/
pp.471-476
/
1994
The capability of PIXE (Proton Induced X-ray Emission) method for the precision measurement of coating thickness has been tested by measuring several gold coated copper plates. Two different experimental methods are applied and compared. The results are compared with those by the weight measurement and proton RBS (Rutherford Backscattering Spectrometry). The advantage of the method is that it can be also used for the nondestructive thickness measurement of this layers on large-scaled samples or archeological samples which cannot be placed in a vacuum chamber.
Biological data mining has been noticed as an issue as the volume of biological data is increasing extremely. Grid technology can share and utilize computing data and resources. In this paper, we propose a hybrid system that combines biological data mining with grid technology. Especially, we propose a decision range adjustment algorithm for processing efficiency of biological data mining. We obtain a reliable data mining recognition rate automatically and rapidly through this algorithm. And communication loads and resource allocation are key issues in grid environment because the resources are geographically distributed and interacted with themselves. Therefore, we propose a dynamic load balancing algorithm and apply it to the grid-based biological data mining method. For performance evaluation, we measure average processing time, average communication time, and average resource utilization. Experimental results show that this method provides many advantages in aspects of processing time and cost.
Seogyeong Lee;Se-Wook Oh;Sang-Ho Cho;Junhyeok Park
Explosives and Blasting
/
v.42
no.2
/
pp.29-41
/
2024
The increasing demand for metallic minerals due to global growth and the continued exploitation of near-surface minerals requires safe and efficient ways to mine ores present in deep mines. In deep mines, stresses concentrated around the cavity increase, which can lead to problems such as induced seismicity and rockbursts. In addition, the transfer of energy from blasting to deeply located faults can cause fault slip, which can lead to earthquakes, and controlling these events is key to deep mining methods. In this technical report, we will introduce the Underhand Closed Bench (UCB) mining method, which can control possible accidents and increase productivity when mining in deep mines.
Rockbursts, catastrophic events involving the violent release of elastic energy stored in rock features, remain a worldwide challenge for geoengineering. Especially at deep-mining sites, rockbursts can occur in hard, high-stress, brittle rock zones, and the associated risk depends on such factors as mining activity and the stress on surrounding rocks. Rockbursts are often sudden and destructive, but there is still no unified standard for predicting them. Based on previous studies, a new Bayesian multi-index model was introduced to predict and evaluate rockbursts. In this method, the rock strength index, energy release index, and surrounding rock stress are the basic factors. Values from 18 rock samples were obtained, and the potential rockburst risks were evaluated. The rockburst tendencies of the samples were modelled using three existing methods. The results were compared with those obtained by the new Bayesian model, which was observed to predict rockbursts more effectively than the current methods.
Journal of Information Technology Applications and Management
/
v.26
no.3
/
pp.43-59
/
2019
The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korean new year addresses, one of most important and authoritative document publicly announced by North Korean government. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. We propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and co-occurrence networks. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of Kim Jung Un of the North Korea from 2017 to 2019. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. We found that uncovered semantic structures of North Korean new year addresses closely follow major changes in North Korean government's positions toward their own people as well as outside audience such as USA and South Korea.
This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.