• Title/Summary/Keyword: Minimum thickness design

Search Result 221, Processing Time 0.022 seconds

Effect of MAD Snoring Design on Pharyngeal Airway Dimension (하악전방이동 코골이 장치의 수직 교합량이 상기도에 미치는 영향)

  • Ra, In-Sil;Lee, Jang-Hoon
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.307-314
    • /
    • 2017
  • In this study, a minimum amount of the vertical occlusion was secured differently in each type of mandibular advance devices snoring and Class I malocclusion patients wore these devices. This study analyzes, after the use of devices, a different amount of the vertical occlusion results in a change of the area of upper airway by additional changes such as mandibular position, muscle changes, tongue position. The higher the vertical amount, the area of the upper airway was shown smaller, And if the patient's tongues was prevented from the distal movement, the area of the upper airway had increased, To reduce snoring, doctors should accurately diagnose patients' occlusal relationships and select a MAD snoring that is appropriate for the occlusion. The dental technician who builds the selected device should also consider design settings such as the amount of vertical occlusion, the finish lines, and the thickness of the device to increase the effectiveness of the device.

An Experimental Study of Local Mass Transfer Characteristics on Inclined Flat Plate (경사진 평판에서의 국소물질전달 특성에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Jo, Woo-Sik;Cho, Woong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1335-1341
    • /
    • 2011
  • The purpose of this research is to investigate how separated and reattached flow affects mass transfer, by comparing the local mass transfer characteristics on an inclined flat plate with those on a parallel flat plate. The local mass transfer coefficients for the flat plate were measured using the naphthalene sublimation technique; the inclined angle of the flat plate was varied from $-10^{\circ}$ to $10^{\circ}$ at $5^{\circ}$ intervals, and the free-stream velocity was varied from 2m/s to 15m/s. At positive inclined angles, the local Sherwood numbers decreased gradually because the boundary-layer thickness increased. On the other hand, for negative inclined angles, the local Sherwood numbers assumed the minimum value at the separation point of the recirculation flow and the maximum value at the reattachment point. The average Sherwood numbers for both positive and negative inclined angles were lower than those in the case of the parallel plate.

Strength Analysis of Double Bottom Structures in Stranding by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 좌초시(坐礁時) 이중저(二重底) 구조(構造)의 손상 및 강도(强度) 해석(解析))

  • Jeom-K. Paik;Chang-Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.125-138
    • /
    • 1991
  • In this paper, an efficient method for the analysis of damage and strength of double bottom structure in stranding is described by using idealized structural unit method. Also a procedure for the determination of the effective double bottom height which is required in order to protect the inner-bottom plate is proposed. In the comparison between the present solution and he existing experimental and numerical results in stranding, its observed that the present method gives reasonable results requiring very shorts computiong times. The present method is then applied to the double bottom structure of 40K product oil carrier which is designed by the double skin design concept as an example. By performing the series of analysis, the influence of vertical member space, plate thickness and double bottom height on the energy absorption capacity of the double bottom structure in stranding is investigated. Also the minimum double bottom height with varying each design variable Is calculated based on the above result.

  • PDF

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

Development of a CAD/CAM System for the Die Having Complex Geometric Solid Shape - for Rotary Blade as an Example - (자유곡면물체(自由曲面物體)의 금형설계(金型設計) 및 제작(製作)의 자동화(自動化)를 위한 CAD/DAM - 로우터리 경운(耕耘)날을 중심(中心)으로 -)

  • Kim, Soung Rai;Kim, Ki Dae
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 1995
  • The CAD/CAM system for the manufacturing automation is the newest technology in mechanical engineering area and becomes the important research subject nowadays. Most of all hardwares and softwares for the CAD/CAM system used in the our manufacturing companies such as automobile company are developed by the foreign country and the purchasing price of them is very expensive but their applicability to a certain area is very limited. This study was conducted to develope a CAD/CAM system for the design and the automatic manufacturing of the iron pattern shaped with 3 - dimensional free curved surface, and to test its applicability to the design and the manufacturing of the rotary blade. The results obtained from the study are as follow; 1. The CAD system which can process graphic procedures from the free curved surface shaped data was developed with personal computer. 2. The CAM main program was developed. This main program could produce CL data from CAD data file by checking the tool interference according to the cutting mode. 3. The sub. program which can simulate the tool trace from the CL data was developed. 4. The post processor for the Deckel FP2NC NC milling machine from CL data file was developed and the sub program could transmit NC program through modem to NC milling machine was developed. 5. The developed CAM system seemed to be applicable to any other system. Because the measuring results of the cross sectional thickness of the plastic model from the manufacturing iron pattern by the system showed that this system could properly check the tool interference. 6. In took 75~90 hours to manufacture two iron patterns of rotary blade. For the sake of convenience in applying to the other systems, this system was developed in BASIC and FORTRAN computer language and minimum portion of machine language as possible.

  • PDF

Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector (중성빔 입사장치에서 빔형성 구조의 입자모사 모형)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • For the effective design of a beam forming structure of the negative-ion-based neutral beam injector, a computer program based on a particle simulation model is developed for the calculation of charged particle motions in the electrostatic fields. The motions of negative ions inside the acceleration tube of a multiple-aperture triode are computed at finite time steps. The electrostatic potentials are obtained from the Poisson's equation by the finite difference method. The successive overrelaxation method is used to solve the matrix equation. The particle and force weighting methods are used on a cloud-in-cell model. The optimum design of the beam forming structure has been studied by using this computer code for the various conditions of elctrodes. The effects of the acceleration-deceleration gap distance, the thickness of the deceleration electrode and the shape of the acceleration electrode on beam trajectories are exmined to find the minimum beam divergence. Some numerical illustrations are presented for the particle movements at finite time steps in the beam forming tubes. It is found in this particle simulation modelling that the shape of the acceleration electrode is the most significant factor of beam divergence.

  • PDF

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Marginal and internal fit according to the shape of the abutment of a zirconia core manufactured by computer-aided design/computer-aided manufacturing (CAD/CAM으로 제작된 지르코니아 코어의 지대치 형태에 따른 변연 및 내면 적합도에 관한 연구)

  • Kim, Ji-Su;Ryu, Jae-Kyung
    • Journal of Korean Dental Hygiene Science
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Background: In this study, zirconia copings were fabricated by setting clinically acceptable inner values for prostheses using computer-aided design/computer-aided manufacturing (CAD/CAM). The processed copings were evaluated for the marginal and internal fit of each abutment shape with a CAD program using the silicone replica technique. Methods A total of 20 copings was produced by selecting models commonly used in clinical practice. After injecting the sample, the minimum thickness, internal adhesion interval, and distance to the margin line were set to 0.5, 0.05, and 1.00 mm using a dental CAD program, respectively. It was measured using a 2D section function in a three-way program of the silicon replication technology. Although the positions and number of measurements of the anterior and posterior regions differed, nine parts of each pre-tube were designated and measured by referring to a previous study to compare the two samples. Results As a result, the average margin of the mesial, distal, and buccal (labial) surfaces was 59.90 ㎛ in the anterior region and 60.40 ㎛ in the posterior region. The mean axial wall margin was 67.25 ㎛ in the anterior region and 69.25 ㎛ in the posterior region. In occlusion, the anterior teeth (77.70 ㎛), posterior teeth (77.60 ㎛), and both anterior and posterior regions were within the clinically acceptable range. Conclusion The edge and inner fit of zirconia coping manufactured using the CAD/CAM system showed clinically applicable results. To reduce errors and increase accuracy, materials and machine errors that affect the manufacture of prosthetics should be investigated. Based on our results, the completeness of prosthetics could increase if the inner value and characteristics of the material are adjusted when applied in clinical practice.

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

Development of the ice resistance series chart for icebreaking ships

  • Lee, Chun-Ju;Joung, Tae-Hwan;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.794-802
    • /
    • 2018
  • The ice resistance series charts for icebreaking ships were developed through a series of systematic model tests in the ice tank of the Korean Research Institute of Ship and Ocean Engineering (KRISO). Spencer's (1992) component-based scaling system for ship-ice model tests was applied to extend the model ship correlations. Beam to draft ratio (B/T), length to beam ratio (L/B), block coefficient ($C_B$) and stem angle (${\alpha}$) were selected as geometric parameters for hull form development. The basic hull form (S1) of twin pod type with B/T of 3.0, L/B of 6.0, $C_B$ of 0.75 and stem angle of $25^{\circ}$ was generated with a modern hull design concept. A total of 13 hulls were designed varying the geometric parameters; B/T of 2.5 and 3.5, L/B of 5.0 and 7.0, $C_B$ from 0.65 to 0.85 in intervals of 0.05, and 5 stem angles from $15^{\circ}$ to $35^{\circ}$. Ice resistance tests were first carried out with the basic hull form in level ice with suitable speed. Four more tests for $C_B$ variations from 0.65 to 0.85 were conducted and two more for beam to draft and length to beam ratios were also performed to study the effect of the geometric parameters on ice resistance. Ice resistance tests were summarized using the volumetric coefficient, $C_V$ ($={\nabla}/L^3$), instead of L/B and $C_B$ variations. Additional model tests were also carried out to account for the effect of the stem angle, ice thickness and ice strength on ice resistance. In order to develop the ice resistance series charts with a minimum number of experiments, the trends of the ice resistance obtained from the experiments were assumed to be similar for other model ship with different geometric parameters. A total of 18 sheets composed of combinations of three different beam to draft ratios and six block coefficients were developed as a parameter of $C_V$ in the low speed regions. Three correction charts were also developed for stem angles, ice thickness and ice strength respectively. The charts were applied to estimate ice resistance for existing icebreaking ships including ARAON, and the results were satisfactory with reasonable accuracy.