This paper proposes new criteria to fix hidden neuron in Multilayer Perceptron Networks for wind speed prediction in renewable energy systems. To fix hidden neurons, 101 various criteria are examined based on the estimated mean squared error. The results show that proposed approach performs better in terms of testing mean squared errors. The convergence analysis is performed for the various proposed criteria. Mean squared error is used as an indicator for fixing neuron in hidden layer. The proposed criteria find solution to fix hidden neuron in neural networks. This approach is effective, accurate with minimal error than other approaches. The significance of increasing the number of hidden neurons in multilayer perceptron network is also analyzed using these criteria. To verify the effectiveness of the proposed method, simulations were conducted on real time wind data. Simulations infer that with minimum mean squared error the proposed approach can be used for wind speed prediction in renewable energy systems.
시간에 따라 순차적으로 들어오는 스트리밍 데이터에서는 전체 데이터 셋을 한꺼번에 모두 이용하는 배치 학습에 기반한 차원축소 기법을 적용하기 어렵다. 따라서 스트리밍 데이터에 적용하기 위한 점층적 차원 감소 방법이 연구되어왔다. 이 논문에서는 최소제곱오차해를 통한 점층적 선형 판별 분석법을 제안한다. 제안 방법은 분산행렬을 직접 구하지 않고 새로 들어오는 샘플의 정보를 이용하여 차원 축소를 위한 사영 방향을 점층적으로 업데이트한다. 실험 결과는 이전에 제안된 점층적 차원축소 알고리즘과 비교하여 이 논문에서 제안한 방법이 더 효과적인 방법임을 입증한다.
In wireless localization, several linear closed-form solution (LCS) methods have been investigated as a direct result of the drawbacks that plague the existing iterative methods, such as the local minimum problem and heavy computational burden. Among the known LCS methods, both the direct solution method and the difference of squared range measurements method are considered in this paper. These LCS methods do not have any of the aforementioned problems that occur in the existing iterative methods. However, each LCS method does have its own individual error property. In this paper, a hybrid LCS method is presented to reduce these errors. The hybrid LCS method integrates the two aforementioned LCS methods by using two check points that give important information on the probability of occurrence of each LCS's individual error. The results of several Monte Carlo simulations show that the proposed method has a good performance. The solutions provided by the proposed method are accurate and reliable. The solutions do not have serious errors such as those that occur in the conventional standalone LCS and iterative methods.
본 논문에서는 다른 셀로부터 발생하는 간섭을 고려하여 다중사용자 다중안테나 하향링크 채널에서 최소평균제곱오차(MMSE: minimum mean-squared error)에 기반한 비선형 연속 프리코딩(precoding) 기법을 제안한다. 기존의 zero forcing(ZF) 기반의 방법과 달리 제안하는 방식은 다른 셀로부터의 간섭을 고려하여 셀 내의 다중사용자 간섭을 억제하는 방식을 취하여 수신단에서의 신호 대 간섭 잡음비를 향상시킬 수 있다. 모의 실험 결과를 통해 제안하는 최소평균제곱오차에 기반한 비선형 전처리 기법이 다양한 셀 간섭 환경에서 기존 방법보다 좋은 성능을 가지는 것을 확인할 수 있다.
This paper makes a close inquiry into ill-conditioning that may be occurred in wireless localization of the sensor nodes based on network signals in the wireless sensor network and provides the clue for solving the problem. In order to estimate the location of a node based on the range information calculated using the signal propagation time, LS (Least Squares) method is usually used. The LS method estimates the solution that makes the squared estimation error minimal. When a nonlinear function is used for the wireless localization, ILS (Iterative Least Squares) method is used. The ILS method process the LS method iteratively after linearizing the nonlinear function at the initial nominal point. This method, however, has a problem that the final solution may converge into a LM (Local Minimum) instead of a GM (Global Minimum) according to the deployment of the fixed nodes and the initial nominal point. The conditions that cause the problem are explained and an adaptive method is presented to solve it, in this paper. It can be expected that the stable location solution can be provided in implementation of the wireless localization methods based on the results of this paper.
Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.
Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.
Kim, Kyoung-Soo;Lee, Jae-Hoon;Chung, Won-Zoo;Kim, Sung-Chul
Journal of the Optical Society of Korea
/
제12권4호
/
pp.249-254
/
2008
In this paper we present an electronic domain solution for chromatic dispersion (CD) monitoring algorithm based on the estimated time domain channel in electronic domain using channel estimation methods. The proposed scheme utilizes kurtosis as a CD measurement, directly computed from the estimated inter-symbol-interference (ISI) channel due to the CD distortion. Hence, the proposed scheme exhibits robust performance under OSNR variation, in contrast to the existing electronic domain approach based on minimum mean squared error (MMSE) fractionally-spaced equalizer taps [1]. The simulation results verify the CD monitoring ability of the proposed scheme.
물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.
스피어 디코더의 초기 반지름 결정 문제는 비트 오율 (bit error rate)과 복잡도에 있어서 많은 영향을 미친다. 이런 초기 반지름은 채널의 통계적 특성을 고려함으로 설정되거나, MMSE 결정 값을 이용하여 설정할 수 있다. 채널의 통계적 특성을 이용한 방법은 초기 반지름이 송신 신호에 해당하는 격자점을 매우 높은 확률로 포함한다. MMSE 결정 값을 이용하는 방법은 먼저 수신 신호에서 MMSE 연 판정 부호(soft output information)을 얻은 후, 경 판정(hard decision)을 내린 다음, 수신 신호 공간에서 경 판정 부호에 해당하는 격자점을 찾는다. 그리고 수신 신호와 경 판정 부호에 해당하는 격자점 사이의 유클리디안 거리(Euclidean distance)를 초기 반지름으로 설정한다. 본 논문에서는 채널의 통계적 특성을 이용한 방법에 있어서 기존의 복잡한 수식에 비해 간단한 새로운 식을 유도하고, MMSE 결정값을 이용한 방법과 비교 연구 하였다. 비교를 위해 'Tightness'라는 새로운 측도를 이용하였다. 전산 실험 결과, 낮은 SNR 영역과 중간 정도의 SNR 영역에서는 MMSE를 이용한 방법의 더 많이 디코딩 복잡도 감소를 보였고, 높은 SNR 영역에서는 채널의 통계적 특성을 이용한 방법이 더 낮은 디코딩 복잡도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.