• Title/Summary/Keyword: Minimum Phase

Search Result 930, Processing Time 0.024 seconds

Study of Spectral Factorization using Circulant Matrix Factorization to Design the FIR/IIR Lattice Filters (FIR/IIR Lattice 필터의 설계를 위한 Circulant Matrix Factorization을 사용한 Spectral Factorization에 관한 연구)

  • 김상태;박종원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • We propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used fur spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR Inter and for the case of the IIR filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

Application of Adaptive Controllers using a Microcomputer to a Heat Exchanger System (마이크로 컴퓨터를 사용한 적응제어기의 열교한기 시스템의 응용)

  • 진경복;강형수;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.720-726
    • /
    • 1988
  • This paper deals with an applicaton of some adaptive algorithms to a heat exchanger using a microcomputer and reviews the experimental results obtained. The heat exchanger prepared for experments was identified as a non-minimum phase system and its exact mathematical models was hardly obtainable with direct computation. Thus, classical strategies, such as PID, needed many trial and errors to determine parameters of the controllers. Furthermore such strategies could not guarantee good performance when system parameters vary. To overcome these difficulties and improve performance, two adaptive methods applicable to a non-minimum phase system were chosen and put to the test. In this paper the performance of adaptive controllers is compared with that of conventional PID controller. The final objective of this paper is to construct a controller readily applicable to industrial processes using a microprocessor.

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr 계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Huh, Hoon;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.353-354
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$ (bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74Gpa at strain rate of $10^2/s$ and minimum strength was found to be 1.6GPa at $10^{-1}/s$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}/s$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

  • PDF

An Efficient Method to Determine the Phase Current Commands of SR Motors for Minimum Torque Ripples (SR 모터의 토크리플을 최소화하는 상전류명령 결정 방법)

  • Kim, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.78-89
    • /
    • 2012
  • The generated torque of a switched reluctance(SR) motor is highly nonlinear, which makes it difficult to determine the reference current commands for minimum torque ripples. In this paper, we present a computationally simple and efficient method to minimize torque ripples of SR motors based on iterative learning control. The reference current command of each phase minimizing torque ripples is identified in 2-dimensional look-up table form. Our learning control algorithm does not require the torque model, so our method is not affected by model errors and hence is very accurate. In order to justify our work, we present some computer simulation results.

Source Localization in the Anechoic Basin at KRISO/KORDI by Using MUSIC Algorithm (무향수조 내에서 MUSIC 알고리듬을 이용한 음원의 위치 추적)

  • Kim, Sea-Moon;Choi, Young-Cheol;Lee, Chong-Moo;Park, Jong-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.68-72
    • /
    • 2002
  • Localization with array sensors has been applied for not only military but also non-military purposes. The identification of submarines and fish finding are those examples. Nowadays the demand for noise identification is increasing to characterize noise sources and improve acoustic performance of underwater acoustic equipment. For that reason KRISO/KORDI recently constructed an anechoic basin which bus reflection only at the free surface. This paper suggests a noise identification methods using MUSIC algorithm in such an acoustic field. For comparison phase delay sum and minimum valiance methods are also described. At first basic principles are described. A several numerical simulations are also performed. The results say that reflection effect many cause a new non-real source although good estimation is obtained under no reflection conditions.

  • PDF

High Speed Position Control Method of a Linear DC Motor (리니어 직류 모터의 고속 위치 제어방식)

  • 엄기환;선동설;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • This paper proposed a minmum time control method by a parabolic switching function to high speed position control, with high accuracy, of a Linear OC Motor A proposed method is organized simply and a bang-bang control's signal switched on a parabola type switching function in the phase for a minimum time control realization. However, a sliding mode occurs owing to system's modelling errors, so the minimum time control is realized a once switching bang-bang control by repeating trial experiments. Next time, in a neighborhood of the origin in the phase plane, a Linear OC Motor is stopped at the origin by the linear feedback control.

  • PDF

A Study on Self-Excited characteristic for stable operation of Three-Phase Induction Generator (3상유도발전기의 안정된 동작을 위한 자기여자현상에 대한 연구)

  • Cho, Y.R.;Maeng, I.J.;Baek, S.H.;Lee, K.Y.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.26-28
    • /
    • 2005
  • Induction generator is the most common generator in wind energy systems because of its simplicity, ruggedness, little maintenance, price and etc. But the main drawbacks in induction generator is its need of reactive power means to build up the terminal voltage. This drawback is not an obstacle today where PWM inverters can accurately supplies the induction generator with its need from reactive power. For a insurance of three-phase induction generator requires capacitive reactance of the terminal. Most of previous work uses numerical iterative method to determine this minimum capacitor. But the numerical iteration takes long time and divergence may be occurs. In this paper is presented the design methods of the minimum self-excited capacitor required for induction generator operation. And a new formula from the equivalent circuit for stable generation operation of self-excited induction generator calculates the proper capacity to obtain the terminal voltage of the load stage. The validity of proposed design methods is confirmed by experimental and computed results.

  • PDF

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.