• Title/Summary/Keyword: Minimum Optimal Size

Search Result 188, Processing Time 0.025 seconds

On the Characteristics of MSE-Optimal Symmetric Scalar Quantizers for the Generalized Gamma, Bucklew-Gallagher, and Hui-Neuhoff Sources

  • Rhee, Jagan;Na, Sangsin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1217-1233
    • /
    • 2015
  • The paper studies characteristics of the minimum mean-square error symmetric scalar quantizers for the generalized gamma, Bucklew-Gallagher and Hui-Neuhoff probability density functions. Toward this goal, asymptotic formulas for the inner- and outermost thresholds, and distortion are derived herein for nonuniform quantizers for the Bucklew-Gallagher and Hui-Neuhoff densities, parallelling the previous studies for the generalized gamma density, and optimal uniform and nonuniform quantizers are designed numerically and their characteristics tabulated for integer rates up to 20 and 16 bits, respectively, except for the Hui-Neuhoff density. The assessed asymptotic formulas are found consistently more accurate as the rate increases, essentially making their asymptotic convergence to true values numerically acceptable at the studied bit range, except for the Hui-Neuhoff density, in which case they are still consistent and suggestive of convergence. Also investigated is the uniqueness problem of the differentiation method for finding optimal step sizes of uniform quantizers: it is observed that, for the commonly studied densities, the distortion has a unique local minimizer, hence showing that the differentiation method yields the optimal step size, but also observed that it leads to multiple solutions to numerous generalized gamma densities.

An Integer Programming Approach to the Problem of Daily Crew Scheduling (일간승무계획문제의 정수계획해법)

  • 변종익;이경식;박성수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.613-616
    • /
    • 2000
  • This paper considers the problem of subway crew scheduling. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper, we propose two basic techniques that solve the problem in a reasonable time, though the optimality of the solution is not guaranteed. To reduce the number of variables, we adopt column-generation technique. We could develop an algorithm that solves column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational results show column-generation makes the problem of treatable size, and variable fixing enables us to solve LP relaxation in shorter time without a considerable increase in the optimal value. Finally, we were able to obtain an integer optimal solution of a real instance within a reasonable time.

  • PDF

A Study on the Optimal Design for the reconstruction Filter in Single Photon Emission Computed Tomography (SPECT) (단일광자방출 전산화 단층촬영상에서 재구성 필터의 최적설계에 관한 연구)

  • 김정희;김광익
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 1997
  • This paper presents an optimal design for the SPECT reconstruction filter, based on a physical limit of SPECT lesion detection capability. To increase the performance of the filter on lesion detectability, the filter design was focused on increasing the local SyW ratio of a threshold lesion, that was determined by minimum detectable lesion size (MDU) from SPECT lesion detectabllity contrast-detail curve. The proposed filter showed flexible window characteristics of resolution recovery and noise smoothing for MDLSs in the resolution-limited and photon-limited regions, respectively, compennting for the relative impact of the main limitation factors on threshold detectability. The simulated results showed good adaptability of the proposed filter to the changes in physical parameters of photon counts, object contrast, and detector system resolution.

  • PDF

A Study on LED Electrode Optimal Disposition by Resistor Network Model (저항 네트워크 모델을 통한 LED 전극의 최적화 배치에 대한 연구)

  • Gong, Myeong-Kook;Kim, Do-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.457-458
    • /
    • 2007
  • We investigated a resistor network model for the horizontal AlInGaN LED. Adding the proposed current density dependent relative quantum efficiency, the power simulation can be also obtained. Comparing the simulation and the measurement results for the LED with the size of $350{\mu}m$, the model is reasonable to simulate the forward voltage and the light output power. Using this model we investigated the optimization of the position and the number of the finger electrodes in a given chip area. It shows that the center disposition of the p-finger electrode in p-area is optimal for the voltage and best for the power. And the minimum number of the n-finger electrodes is best for the power.

  • PDF

An Optimal Feature Selection Method to Detect Malwares in Real Time Using Machine Learning (기계학습 기반의 실시간 악성코드 탐지를 위한 최적 특징 선택 방법)

  • Joo, Jin-Gul;Jeong, In-Seon;Kang, Seung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 2019
  • The performance of an intelligent classifier for detecting malwares added to multimedia contents based on machine learning is highly dependent on the properties of feature set. Especially, in order to determine the malicious code in real time the size of feature set should be as short as possible without reducing the accuracy. In this paper, we introduce an optimal feature selection method to satisfy both high detection rate and the minimum length of feature set against the feature set provided by PEFeatureExtractor well known as a feature extraction tool. For the evaluation of the proposed method, we perform the experiments using Windows Portable Executables 32bits.

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Sizing and Economic Analysis of Battery Energy Storage System for Peak Shaving of High-Speed Railway Substations (고속철도 변전소 피크부하 저감용 ESS 용량 산정 및 경제성 분석)

  • Kim, Seul-Ki;Kim, Jong-Yul;Cho, Kyeong-Hee;Byun, Gil-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • The paper proposed a sizing method of an energy storage system(ESS) for peak shaving of high-speed railway substations based on load profile patterns of substations. A lithium based battery ESS was selected since it can produce high-power at high speed that peak shaving requires, and also takes up a relatively smaller space for installation. Adequate size of the ESS, minimum capacity which can technically meet a peak shaving target, was determined by collectively considering load patterns of a target substation, characteristics of the ESS to be installed, and optimal scheduling of the ESS. In case study, a local substation was considered to demonstrate the proposed sizing method. Also economic analysis with the determined size of ESS was performed to calculate electricity cost savings of the peak shaving ESS, and to offer pay-back period and return on investment.

Investigation of Thermal Characteristics and Skeleton Size Effects to improve Dimensional Accuracy of Variable Lamination Manufacturing by using EPS Foam (발포 폴리스티렌 폼을 이용한 가변적층 쾌속조형공정의 형상 정밀도 개선을 위한 열전달 특성 및 잔여 재료폭 영향에 관한 연구)

  • 안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.910-913
    • /
    • 2001
  • Rapid Prototyping(RP) techniques have unique characteristics according to their working principle: the stair-stepped surface of a part due to layer-by-layer stacking, low building speed, and additional post-processing to improve surface roughness. A new RP process, Variable Lamination Manufacturing by using expandable polystyrene foam(VLM-S), has been developed to overcome the unfavorable characteristics. The objective of this study is to investigate the thermal characteristics and skeleton size effects as the hotwire cuts EPS foam sheet in order to improve dimensional accuracy of the parts, which is produced by VLM-S. Empirical and analytical approaches are performed to find the relationship between cutting speed and heat input, and the relationship between maximum available cutting speed and heat input. In addition, empirical approaches are carried out to find the relationship between cutting error and skeleton size, and cutting deviation and skeleton size. Based on these results, the optimal hotwire cutting condition and available minimum skeleton size are derived. The outcomes of this study are reflecting in the enhancement of VLM-S input data generation S/W.

  • PDF

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

DCAR: Dynamic Congestion Aware Routing Protocol in Mobile Ad Hoc Networks

  • Kim, Young-Duk;Lee, Sang-Heon;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To achieve load balancing in networks, many protocols have been proposed. However, existing load balancing schemes do not consider the remaining available buffer size of the interface queue, which still results in buffer overflows by congestion in a certain node which has the least available buffer size in the route. To solve this problem, we propose a load balancing protocol called Dynamic Congestion Aware Routing Protocol (DCAR) which monitors the remaining buffer length of all nodes in routes and excludes a certain congested node during the route discovery procedure. We also propose two buffer threshold values to select an optimal route selection metric between the traffic load and the minimum hop count. Through simulation study, we compare DCAR with other on demand routing protocols and show that the proposed protocol is more efficient when a network is heavily loaded.

  • PDF